Skip to main content
Log in

Electronic and Optical Properties of TiO2 Thin Films: Combined Experimental and Theoretical Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we report the electronic, optical and electrical properties of rutile and anatase crystalline phases of titanium dioxide (TiO2) using first-principles calculations based on density functional theory and experimentally prepared sol precursor using spin coating into glass substrates. X-ray diffraction, atomic force microscopy and ultraviolet–visible–near-infrared spectrophotometry were used to obtain, respectively, structural, morphological and optical properties of deposited films. The theoretical results showed a wide band gap of 2.52 and 3.00 eV for the rutile and anatase phases, respectively, which is consistent with the experimental results found. The measured transmittance of TiO2 reveals that they have high optical transmission (> 80%) and high refractive index in the visible region. Ab initio calculations were also performed with a comparison between Perdew, Burke and Ernzerhof Generalized Gradient and Tran-Blaha Modified Becke-Johnson approximations to calculate complex dielectric function, reflectivity, absorption, electrical, as well as thermal conductivity in the wavelength range of 100-1000 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Rams, A. Tejeda, and J.M. Cabrera, J. Appl. Phys. 82, 994 (1997).

    Article  CAS  Google Scholar 

  2. G. Liu, L. Wang, H.G. Yang, H.M. Cheng, and G.Q. Lu, J. Mater. Chem. 20, 831 (2010).

    Article  Google Scholar 

  3. J. Houska, S. Mraz, and J.M. Schneider, J. Appl. Phys. 112, 073527 (2012).

    Article  CAS  Google Scholar 

  4. A. Fahmi, C. Minot, B. Silvi, and M. Causá, Theoretical analysis of the structures of titanium dioxide crystalsPhys. Rev. B. 47, 11717 (1993).

    Article  CAS  Google Scholar 

  5. A. GrüNebohm, M. Siewert, C. Ederer, and P. Entel, Ferroelectrics 429, 31 (2012).

    Article  CAS  Google Scholar 

  6. S. Gong, and B.G. Liu, Chin. Phys. B. 21, 7104 (2012).

    Article  CAS  Google Scholar 

  7. S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J.B. Goates, and B.F. Woodfield, Am. Miner. 94, 236 (2009).

    Article  CAS  Google Scholar 

  8. S. Suzuki, H. Ohsaki, and E. Ando, Jpn. J. Appl. Phys. 35, 1862 (1996).

    Article  CAS  Google Scholar 

  9. C. Guillard, B. Beaugiraud, C. Dutriez, J.M. Herrmann, H. Jaffrezic, N.J. Renault, and M. Lacroix, Appl. Catal. B Environ. 39, 331 (2002).

    Article  CAS  Google Scholar 

  10. I.S. Mulla, H.S. Soni, V.J. Rao, and A.P.B. Sinha, J. Mater. Sci. 21, 1280 (1986).

    Article  CAS  Google Scholar 

  11. B.R. Sankapal, S.D. Sartale, M.C. Lux-Steiner, and A. Ennaoui, Comptes Rendus Chim. 9, 702 (2006).

    Article  CAS  Google Scholar 

  12. M. Hepel, and I.D. Kumarihamy, Int. J. Hydrogen Energy. 32, 2693 (2007).

    Article  CAS  Google Scholar 

  13. S. Xu, J. Ng, X. Zhang, H. Bai, and D.D. Sun, Int. J. Hydrogen Energy. 35, 5254 (2010).

    Article  CAS  Google Scholar 

  14. M. Menning and M. A. Aegerter, Sol-gel technologies for glass producers and users (Kluwer Academic Publishers, Berlin, 2004).

  15. H. Schmidt, J. Non. Cryst. Solids 100, 51 (1988).

    Article  CAS  Google Scholar 

  16. H.K. Schmidt, E. Geiter, M. Mennig, H. Krug, C. Becker, and R.-P. Winkler, J. Sol Gel Sci. Technol. 13, 397 (1998).

    Article  CAS  Google Scholar 

  17. L.-H. Ye, K. Hoang, A.J. Freeman, S.D. Mahanti, J. He, T.M. Tritt, and M.G. Kanatzidis, Phys. Rev. B. 77, 245203 (2008).

    Article  CAS  Google Scholar 

  18. K. Hoang, and M. Johannes, Chem. Mater. 23, 3003 (2011).

    Article  CAS  Google Scholar 

  19. K. Hoang, Phys. Status Solidi Rapid Res. Lett. 9, 722 (2015).

    Article  CAS  Google Scholar 

  20. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna Technological University, 2001).

    Google Scholar 

  21. G.K.H. Madsen, and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantitiesComput. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  22. W. S. Ebhota, T.-C. Jen, Efficient low-cost materials for solar energy applications: roles of nanotechnology. Recent developments in photovoltaic materials and devices (IntechOpen. 2018).

  23. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  24. F. Tran, and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  25. O.A. Yassin, Optik (Stuttg) 127, 1817 (2016).

    Article  CAS  Google Scholar 

  26. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B Condens. Matter Mater. Phys. 83, 195134 (2011).

    Article  CAS  Google Scholar 

  27. S. Kurth, J.P. Perdew, and P. Blaha, Int. J. Quantum Chem. 75, 889 (1999).

    Article  CAS  Google Scholar 

  28. V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew, Phys. Rev. B. 69, 75102 (2004).

    Article  CAS  Google Scholar 

  29. F. Tran, P. Blaha, and K. Schwarz, J. Phys. Condens. Matter 19, 196208 (2007).

    Article  CAS  Google Scholar 

  30. A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, and X. Portier, Int. J. Hydrogen Energy. 36, 4130 (2011).

    Article  CAS  Google Scholar 

  31. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d de Coss, G. Oskam. Nanotechnology. 19, 145605 (2008).

  32. N.N. Anua, R. Ahmed, A. Shaari, M.A. Saeed, B.U. Haq, and S. Goumri-Said, Semicond. Sci. Technol. 28, 105015 (2013).

    Article  CAS  Google Scholar 

  33. S. Di Mo, and W.Y. Ching, Phys. Rev. B. 51, 13023 (1995).

    Article  CAS  Google Scholar 

  34. C. Lee, and X. Gonze, Phys. Rev. B. 49, 14730 (1994).

    Article  CAS  Google Scholar 

  35. M.M. Islam, T. Bredow, and A. Gerson, Phys. Rev. B. 76, 1 (2007).

    Article  CAS  Google Scholar 

  36. B.U. Haq, R. Ahmed, F.E.H. Hassan, R. Khenata, M.K. Kasmin, and S. Goumri-Said, Sol. Energy. 100, 1 (2014).

    Article  CAS  Google Scholar 

  37. M. Mohamad, B.U. Haq, R. Ahmed, A. Shaari, N. Ali, and R. Hussain, Mater. Sci. Semicond. Process. 31, 405 (2015).

    Article  CAS  Google Scholar 

  38. H. Ennaceri, M. Boujnah, A. Taleb, A. Khaldoun, R.S. Araoz, A. Ennaoui, A. El Kenz, and A. Benyoussef, Int. J. Hydrogen Energy 42, 19467 (2017).

    Article  CAS  Google Scholar 

  39. H. Xing-Gang, L. An-Dong, H. Mei-Dong, L. Bin, and W. Xiao-Ling, Chin. Phys. Lett. 26, 077106 (2009).

    Article  Google Scholar 

  40. L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, Appl. Surf. Sci. 212–213, 255 (2003).

    Article  CAS  Google Scholar 

  41. R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Lévy, J. Appl. Phys. 75, 2945 (1994).

    Article  Google Scholar 

  42. J.S. Toll, Phys. Rev. 104, 1760 (1956).

    Article  Google Scholar 

  43. R. de L. Kronig. J. Opt. Soc. Am. 12(6), 547–557 (1926).

  44. S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Sci. Rep. 8, 1 (2018).

    Google Scholar 

  45. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, and F. Lévy, J. Appl. Phys. 75, 2042 (1994).

    Article  CAS  Google Scholar 

  46. M. Landmann, E. Rauls, and W.G. Schmidt, J. Phys. Condens. Matter. 24, 195503 (2012).

    Article  CAS  Google Scholar 

  47. J. Sun, H.T. Wang, J. He, and Y. Tian, Phys. Rev. B. 71, 125132 (2005).

    Article  CAS  Google Scholar 

  48. S. Ozaki, and S. Adachi, J. Appl. Phys. 75, 7470 (1994).

    Article  CAS  Google Scholar 

  49. W. Naffouti, T. Ben Nasr, H. Meradji, and N. Kamoun-Turki, J. Electron. Mater. 45, 5096 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. P. Blaha and Prof. K. Schwarz at Wien Technical University for the Wien2k code and they kind reply. M. Boujnah is grateful to DGAPA-UNAM for the postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Soussi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soussi, A., Ait Hssi, A., Boujnah, M. et al. Electronic and Optical Properties of TiO2 Thin Films: Combined Experimental and Theoretical Study. Journal of Elec Materi 50, 4497–4510 (2021). https://doi.org/10.1007/s11664-021-08976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08976-8

Keywords

Navigation