Skip to main content
Log in

First-Principles Investigation of Structural, Thermal and Transport Properties of Anatase TiO2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A theoretical calculation of the structural, thermal and transport properties of anatase titanium dioxide (TiO2) was investigated with the help of density functional theory and Boltzmann theory. The fully optimized structure was obtained by minimizing the total energy. The variations of the volume (V), bulk modulus (B), Debye temperature (Θ), heat capacities at constant volume (C v ) and constant pressure (C p ), entropy (S), Grüneisen parameter (γ) and thermal expansion coefficient (α) as a function of the pressure (P) and temperature (T) were all obtained and analyzed in detail. Boltzmann theory calculations have been used to evaluate important transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (K el ) and power factor (S 2 σ) with respect to scattering time (τ) as a function of chemical potential (μ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.Y. Yu, W.C. Chien, Y.H. Ko, and S.H. Chen, Thin Solid Films 520, 1503 (2011).

    Article  Google Scholar 

  2. S. Ding, B. Gao, D. Shan, Y. Sun, and S. Cosnier, Biosens. Bioelectron. 39, 342 (2013).

    Article  Google Scholar 

  3. J. BenNaceur, R. Mechiakh, F. Bousbih, and R. Chtourou, Appl. Surf. Sci. 257, 10699 (2011).

    Article  Google Scholar 

  4. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  5. W. Kohn and L.S. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  6. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kavanicka, and J. Luitz, WIEN2K, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Wien: Techn. Universitat Wien, 2001).

    Google Scholar 

  7. M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  8. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  9. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  Google Scholar 

  10. T. Mahmood, C. Cao, R. Ahmed, M. Ahmed, M.A. Saeed, A.A. Zafar, T. Husain, and M.A. Kamran, Sains Malays 42, 231 (2013).

    Google Scholar 

  11. Q. Chen and H.H. Cao, J. Mol. Struct. (Theochem.) 723, 135 (2005).

    Article  Google Scholar 

  12. W. Zeng, T. Liu, and Z. Wang, Sens. Actuators B 166, 141 (2012).

    Article  Google Scholar 

  13. M.A. Blanco, A. Martín Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. (Theochem.) 368, 245 (1996).

    Article  Google Scholar 

  14. E. Francisco, M.A. Blanco, and G. Sanjurjo, Phys. Rev. B 63, 094107 (2001).

    Article  Google Scholar 

  15. S. Amari, R. Mebsout, S. Méçabih, B. Abbar, and B. Bouhafs, Intermetallics 44, 26 (2014).

    Article  Google Scholar 

  16. F.Z. Benkhelifa, A. Lekhal, S. Méçabih, B. Abbar, and B. Bouhafs, J. Magn. Magn. Mater. 371, 130 (2014).

    Article  Google Scholar 

  17. K. Hacini, Z. Chouahda, A. Djedid, H. Meradji, S. Ghemid, F. El Haj, Hassan, and R. Khenata. Mater. Sci. Semicond. Process. 26, 642 (2014).

    Article  Google Scholar 

  18. S. Sharma, A.S. Verma, R. Bhandari, and V.K. Jindal, Comput. Mater. Sci. 86, 108 (2014).

    Article  Google Scholar 

  19. A.A. Levchenko, A.I. Kolesnikov, N.L. Ross, J. Boerio-Goates, B.F. Woodfield, G. Li, and A. Navrotsky, J. Phys. Chem. A 111, 12584 (2007).

    Article  Google Scholar 

  20. S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J.B. Goates, and B.F. Woodfield, Am. Mineral. 94, 236 (2009).

    Article  Google Scholar 

  21. Alan Matthews, Am. Mineral. 61, 419424 (1976).

    Google Scholar 

  22. L.J. Zhang and D.J. Singh, Phys. Rev. B 81, 245119 (2010).

    Article  Google Scholar 

  23. K. Ahn, E. Cho, J.-S. Rhyee, S.I. Kim, S. Hwang, H.-S. Kim, S.M. Lee, and K.H. Lee, J. Mater. Chem. 22, 5730 (2012).

    Article  Google Scholar 

  24. S. Azam, S.A. Khan, F.A. Shah, S. Muhammad, H.U. Din, and R. Khenata, Intermetallics 55, 184 (2014).

    Article  Google Scholar 

  25. R. Brahimi, Y. Bessekhouad, and M. Trari, Phys. B 407, 3897 (2012).

    Article  Google Scholar 

  26. T.J. Ha, H.H. Park, S.Y. Jung, S.J. Yoon, J.S. Kim, and H.W. Jang, Thin Solid Films 518, 7196 (2010).

    Article  Google Scholar 

  27. D. Bayerl and E. Kioupakis, Phys. Rev. B 91, 165104 (2015).

    Article  Google Scholar 

  28. M.B. Ricoult, J.R. Rustad, D. Vargheese, I. Dutta, and K. Work, J. Electron. Mater. 41, 6 (2012).

    Google Scholar 

  29. H.A.R. Aliabad, M. Ghazanfari, I. Ahmad, and M.A. Saeed, Comput. Mater. Sci. 65, 509 (2012).

    Article  Google Scholar 

  30. H.Y. Lv, H.J. Liu, L. Pan, Y.W. Wen, X.J. Tan, J. Shi, and X.F. Tang, Appl. Phys. Lett. 96, 142101 (2010).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Professors S. Alleg and S. Ghemidh, from Faculty of Sciences, University of Annaba, Algeria, for valuable discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Naffouti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naffouti, W., Ben Nasr, T., Meradji, H. et al. First-Principles Investigation of Structural, Thermal and Transport Properties of Anatase TiO2 . J. Electron. Mater. 45, 5096–5103 (2016). https://doi.org/10.1007/s11664-016-4713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4713-0

Keywords

Navigation