Skip to main content

Advertisement

Log in

Theoretical and experimental investigation of the electronic, optical, electric, and elastic properties of Zn-doped anatase TiO2 for photocatalytic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Anatase titanium dioxide is one of the most promising energy materials. However, it suffers from low electrical conductivity due to its wide band gap that corresponds to only UV radiation absorption. Regarding these challenges, Zn doping is considered as an attractive solution to enhance its performance in photocatalysis, solar cells, and transparent conducting oxide films. Thus, with this motive, we have investigated Zn-doped titanium dioxide (Zn:TiO2) by ab initio calculations within the density functional theory (DFT). The theoretical RAMAN spectra are calculated using the Becke three-parameter Lee–Yang–Parr (B3LYP) functional through the implementation algorithm of the CRYSTAL17 code. Results agree well with the experimental data, and the observed modes reveal the anatase phase of TiO2. The increase in Zn content leads to a band gap reduction, and the optical properties are strongly enhanced in TiO2: Zn (4 and 6%), which extend light absorption edge to the visible light range and promote good photocatalytic activity. Correlations between DFT calculations and electrical response are also established. Accordingly, the values of the capacitance as well as resistance are extracted from the equivalent circuit model of the Nyquist plots. The resistance decreases with increasing the Zn content which results in higher leakage current under constant voltage stress. The mechanical response is also investigated to verify the stability of the (Zn:TiO2) films. In the tetragonal structure, pure TiO2 has a large bulk modulus of 178 GPa and a small shear modulus of 71.8 GPa. However, with increasing the Zn concentration, the stiffness and brittleness of the films decrease, while the anisotropic character increases. This could be very promising for energy-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Govindarajan, T.S. Boscke, P. Sivasubramani, P.D. Kirsch, B.H. Lee, H.H. Tseng, R. Jammy, U. Schroder, S. Ramanathan, B.E. Gnade, Appl. Phys. Lett. 91, 062906 (2007)

    Article  ADS  Google Scholar 

  2. J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C 114, 783 (2010)

    Article  Google Scholar 

  3. M. Afzali, M. Ali, S. Tayebeh, Org. Electron. 86, 105907 (2020)

    Article  Google Scholar 

  4. Y. Wang, R. Zhang, L. Li, L. Li, S. Lin, Nano. Res. Lett. 9, 46 (2014)

    Article  Google Scholar 

  5. P.S. Basavarajappa, S.B. Patil, N. Ganganagappa, K.R. Reddy, A.V. Raghu, C.V. Reddy, Int. J. Hydr. Energy 45, 7764 (2020)

    Article  Google Scholar 

  6. A. Zada, Y. Qu, S. Ali, N. Sun, H. Lu, R. Yan, X. Zhang, L. Jing, J. Haz. Mater. 342, 715 (2018)

    Article  Google Scholar 

  7. J. Zhou, G. Tian, Y. Chen, J. Wang, X. Cao, Y. Shi, K. Pan, H. Fu, Dalton Trans. 42, 11242 (2013)

    Article  Google Scholar 

  8. M. A. Barakat, R. Kumar (Springer, Cham, 2016), pp. 1–29

  9. Y.L. Pang, Z.A. Ahmad, J. Haz. Mater. 235, 326–335 (2012)

    Article  Google Scholar 

  10. W. Choi, T.A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (2002)

    Article  Google Scholar 

  11. N. Sharotri, D. Sharma, D. Sud, J. Mater. Res. and Tech. 8, 3995 (2019)

    Article  Google Scholar 

  12. L.G. Devi, N. Kottam, B.N. Murthy, S.G. Kumar, J. Mol. Cat. A: Chem. 328, 44 (2010)

    Article  Google Scholar 

  13. M. Devi, M.R. Panigrahi, U.P. Singh, J. Mater. Sci.: Mat. Electron. 26, 1186 (2015)

    Google Scholar 

  14. S.M. Esfandfard, M.R. Elahifard, R. Behjatmanesh-Ardakani, H. Kargar, Phys. Chem. Res. 6, 547 (2018)

    Google Scholar 

  15. M.K. Tariq, A. Riaz, R. Khan, A. Wajid, H.U. Haq, S. Javed, M. Islam, Mater. Res. Expr. 6(10), 106435 (2019)

    Article  ADS  Google Scholar 

  16. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Cond. Mater. 14, 2717 (2002)

    ADS  Google Scholar 

  17. S. Goedecker, M. Teter, J. Huetter, Phys. Rev. B. 54, 1703 (1996)

    Article  ADS  Google Scholar 

  18. A. Erba, J. Baima, I. Bush, R. Orlando, R. Dovesi, J. Chem. Theo. Comput. 13, 5019 (2017)

    Article  Google Scholar 

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B. 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. O. Khaldi, F. Jomni, P. Gonon, J. App. Phys. 128, 134101 (2020)

    Article  ADS  Google Scholar 

  21. L. Fast, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. B. 51, 17431 (1995)

    Article  ADS  Google Scholar 

  22. T. Mahmood, C. Cao, W.S. Khan, Z. Usman, F.K. Butt, S. Hussain, Phys B: Cond. Mater. 407, 958 (2012)

    Article  ADS  Google Scholar 

  23. M.N. Iliev, V.G. Hadjiev, A.P. Litvinchuk, Vib. Spec. 64, 148 (2013)

    Article  Google Scholar 

  24. T. Ohsaka, F. Izumi, Y. Fujiki, J. Ram. Spec. 7, 321 (1978)

    Article  ADS  Google Scholar 

  25. R. Chauhan, A. Kumar, R.P. Chaudhary, J. Sol-Gel Sci Tech. 61, 585 (2012)

    Article  Google Scholar 

  26. T.C. Paul, J. Podder, App. Phys. A. 125, 818 (2019)

    Article  ADS  Google Scholar 

  27. D. Selli, G. Fazio, C. Di Valentin, Catalysts 7, 357 (2017)

    Article  Google Scholar 

  28. F. Labat, P. Baranek, C. Domain, C. Minot, C. Adamo, J. Chem. Phys. 126, 154703 (2007)

    Article  ADS  Google Scholar 

  29. D.C. Ghosh, R. Biswas, Int. J. Mol. Sci. 4, 379 (2003)

    Article  Google Scholar 

  30. T.C. Paul, J. Podder, M.H. Babu, Surf. Interfaces 21, 100725 (2020)

    Article  Google Scholar 

  31. S. Herodotou, R.E. Treharne, K. Durose, G.J. Tatlock, R.J. Potter, Materials 8, 7230 (2015)

    Article  ADS  Google Scholar 

  32. M. Salazar-Villanueva, A. Cruz-López, A.A. Zaldívar-Cadena, A. Tovar-Corona, O. Vazquez-Cuchillo, M.L. Guevara-Romero, Mater. Sci. Semicond. Process. 58, 8 (2017)

    Article  Google Scholar 

  33. S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C.D. Valentin, G. Pacchioni, J. Am. Chem. Soc. 128, 15666 (2006)

    Article  Google Scholar 

  34. O. Khaldi, P. Gonon, C. Mannequin, C. Vallée, F. Jomni, A. Sylvestre, ECS Solid State Lett. 2, N15 (2013)

    Article  Google Scholar 

  35. X. Liu, J. Fu, Optik 206, 164342 (2020)

    Article  ADS  Google Scholar 

  36. W.J. Yin, S. Chen, J.H. Yang, X.G. Gong, Y. Yan, S.H. Wei, App. Phys. Lett. 96, 221901 (2010)

    Article  ADS  Google Scholar 

  37. M. Iuga, G.S. Neumann, J. Meinhardt, Eur. Phys. J. B. 58, 127 (2007)

    Article  ADS  Google Scholar 

  38. X. Lü, W. Yang, Z. Quan, T. Lin, L. Bai, L. Wang, F. Huang, Y. Zhao, J. Am. Chem. Soc. 136(1), 419 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othmen Khaldi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaldi, O., Majouri, A. & Larbi, T. Theoretical and experimental investigation of the electronic, optical, electric, and elastic properties of Zn-doped anatase TiO2 for photocatalytic applications. Appl. Phys. A 127, 557 (2021). https://doi.org/10.1007/s00339-021-04721-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04721-4

Keywords

Navigation