Skip to main content

Advertisement

Log in

Electrical Properties of Ce0.8Dy0.175Ca0.025O2-δ

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present paper is focused on the structure, microstructure, and electrical properties of Ca (calcium)- and Dy (dysprosium)-doped ceria electrolyte materials. The CaDDC (Ce0.8Dy0.175Ca0.025O2-δ) sample was prepared through a modified sol–gel low-temperature process using sucrose and pectin. Rietveld analysis of powder x-ray diffraction (XRD) patterns confirms the cubic structure with a single phase. The Raman spectroscopy studies confirm the improved oxygen vacancies for the sample CaDDC over pure ceria. The scanning electron microscopy (SEM) images showed the highly dense surface. Energy-dispersive spectroscopy (EDS) confirms the sample chemical composition. Impedance spectroscopic studies were carried out to analyze the electrical properties. Migration energy (Em) and association energy (Easso.) were calculated from the dielectric relaxation process for oxide ion migration. Relaxation peaks were observed in tangent loss due to the presence of defect pairs. Modulus analysis showed a single relaxation peak, which indicates the reorientation of defect associates. The Ce0.8Dy0.175Ca0.025O2-δ sample exhibits improved conductivity of 1.23 × 10–2 S/cm at 600°C with an activation energy of 0.89 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Inaba, and H. Tagawa, Solid State Ionics 83, 1 (1996).

    Article  CAS  Google Scholar 

  2. Larmine dicks, Fuel Cell Systems Explained. (Wiley, London, 2000), pp.166

  3. B.C.H. Steele, Solid State Ionics 129, 95 (2000).

    Article  CAS  Google Scholar 

  4. N.Q. Minh, and T. Takahashi, Science and technology of ceramic fuel cells (Netherlands: Elsevier publications, 1995).

    Google Scholar 

  5. J.A. Kilner, Solid State Ionics 129, 13 (2000).

    Article  CAS  Google Scholar 

  6. S. Kuharuangrong, J. Power Sources 171, 506 (2007).

    Article  CAS  Google Scholar 

  7. H. Yamamura, E. Kotah, M. Ichikawa, K. Kakinuma, T. Mori, and H. Haneda, Electrochemistry 68, 455 (2000).

    Article  CAS  Google Scholar 

  8. D.J. Kim, J Am Ceram Soc. 72, 1415 (1989).

    Article  CAS  Google Scholar 

  9. B. Ramesh, S. Ramesh, R. Vijaya Kumar, and M. Lakshmipathi Rao, J. Alloys Compd. 513, 289 (2012).

    Article  CAS  Google Scholar 

  10. A. Moure, J. Tartaj, and C. Moure, Mater. Lett. 65, 89 (2011).

    Article  CAS  Google Scholar 

  11. S. Ramesh, K.C.J. Raju, and C.V. Reddy, Trans. Nonferrous Met. Soc. China 24, 393 (2014).

    Article  CAS  Google Scholar 

  12. Y. Zheng, S. He, L. Ge, M. Zhou, H. Chen, and L. Guo, Int. J. Hydro. Energy 36, 5128 (2011).

    Article  CAS  Google Scholar 

  13. N. Cioateră, V. Pârvulescu, A. Rolle, and R.N. Vannier, Solid State Ion. 180, 681 (2009).

    Article  Google Scholar 

  14. L. Ge, R. Li, S. He, H. Chen, and L. Guo, J. Power Sources 230, 161 (2013).

    Article  CAS  Google Scholar 

  15. S. Anirban, P.T. Das, and A. Dutta, Ceram. Int. 45, 5751 (2019).

    Article  CAS  Google Scholar 

  16. K. Tanwar, N. Jaiswal, D. Kumar, and O. Parkash, J. Alloy. Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.05.223.

    Article  Google Scholar 

  17. T.H. Yeh, and C.C. Chou, Phys Scr. T129, 303 (2007).

    Article  CAS  Google Scholar 

  18. N. Jaiswal, S. Upadhyay, D. Kumar, and O. Parkash, J. Power Sources 222, 230 (2013).

    Article  CAS  Google Scholar 

  19. K. Sandhya, N.S. Chitra Priya, and D.N. Rajendran, Appl. Phys. A 126, 613 (2020).

    Article  CAS  Google Scholar 

  20. N. Jaiswal, S. Upadhyay, D. Kumar, and O. Parkash, Int. J. Hydrogen Energy 39, 543 (2014).

    Article  CAS  Google Scholar 

  21. Z. Wang, G.M. Kale, and M. Ghadiri, J. Mater. Chem. 21, 16494 (2011).

    Article  CAS  Google Scholar 

  22. B.H. Toby, and R.B. Von Dreele, J. Appl. Crystallogr. 46, 544 (2013).

    Article  CAS  Google Scholar 

  23. J.R. McBride, K.C. Hass, B.D. Poindexter, and W.H. Weber, J Appl. Phys. 764, 2435 (1994).

    Article  Google Scholar 

  24. A. Kumar, B.P. Singh, R.N.P. Choudhary, and A.K. Thakur, J. Alloys Compd. 394, 292 (2005).

    Article  CAS  Google Scholar 

  25. K.P. Padmasree, A.F. Fuentes, (2018), Materials Chemistry and Physics 2018.11.023. doi: https://doi.org/10.1016/j.matchemphys.

  26. S. Komine, Solid State Ionics 178, 315 (2007).

    Article  CAS  Google Scholar 

  27. D.S. Vaisakhan Thampi, P. Prabhakar Rao, and U.A. Renju, J. Solid State Chem. 255, 121 (2017).

    Article  CAS  Google Scholar 

  28. V. Prashanth Kumar, Y.S. Reddy, P. Kistaiah, G. Prasad, and C.V. Reddy, Mater. Chem. Phys. 112, 711 (2008).

    Article  CAS  Google Scholar 

  29. Md.K. Shamim, S. Sharma, S. Sinha, and E. Nasreen, J. Adv. Dielectr. 7, 1750020 (2017).

    Article  CAS  Google Scholar 

  30. Y.C. Wu, and W.Y. Chen, Int J Hydrogen Energy 43, 18463 (2018).

    Article  CAS  Google Scholar 

  31. Y. Zheng, L. Wu, H. Gu, L. Gao, H. Chen, L. Guo, and J. Alloy, Comp. 486, 586 (2009).

    Article  CAS  Google Scholar 

  32. J. Yang, B. Ji, J. Si, Q. Zhang, Q. Yin, and J. Xie, Int. J. Hydrogen Energy 41, 15979 (2016).

    Article  CAS  Google Scholar 

  33. H. Ozdemir, V. Sarıboga, M.A.F. Oksuzomer, and M.A. Gurkaynak, J Power Sources 219, 155 (2012).

    Article  CAS  Google Scholar 

  34. S. Anirban, and A. Dutta, RSC Adv. (2016). https://doi.org/10.1039/C6RA06654B.

    Article  Google Scholar 

  35. S. Anirban, and A. Dutta, RSC Adv. (2015). https://doi.org/10.1039/C5RA20251E.

    Article  Google Scholar 

  36. S.K. Anirban, T. Paul, P.T. Das, T.K. Nath, and A. Dutta, Solid State Ionics 270, 77 (2015).

    Article  Google Scholar 

  37. S.K. Anirban, and A. Dutta, Solid state ionics 295, 48 (2016).

    Article  CAS  Google Scholar 

  38. S.K. Anirban and A. Dutta, Ionics DOI https://doi.org/10.1007/s11581-017-2066-1.

  39. Sk. Anirban and A.Dutta, Solid-state Sci. https://doi.org/https://doi.org/10.1016/j.solidstatesciences.2018.10.007.

  40. Sk. Anirban and A. Dutta, Int. J. Hydrogen Energy, https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.10.219.

  41. A.K. Baral, and V. Sankaranarayanan, Appl. Phys. A 98, 367 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

No funding received

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliat

ions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S. Electrical Properties of Ce0.8Dy0.175Ca0.025O2-δ. Journal of Elec Materi 50, 4333–4345 (2021). https://doi.org/10.1007/s11664-021-08884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08884-x

Keywords

Navigation