Skip to main content
Log in

Electrodeposited Cobalt Hydroxide Thin Films: A Comprehensive Investigation from Synthesis to Advanced Electrochemical Behavior for High-Performance Energy Storage

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH)2 thin films were discovered to have a crystalline structure with a crystallite size of ~ 40 nanometers, particle size of 180 nm, and a leaf-like morphology via XRD (X-ray Diffraction) and SEM (Scanning Electron Microscopy) respectively. Further properties were investigated by EDS (Energy-Dispersive X-ray Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), and UV Vis Spectra (Ultraviolet-Visible Spectroscopy) analysis. The presence of cobalt hydroxide was confirmed by EDS, verifying the purity of the substance. Electrochemical characteristics, such as CV (Cyclic Voltammetry), GCD (Galvanostatic Charge-Discharge), and EIS (Electrochemical Impedance Spectroscopy) analysis, indicated capacitive behavior, confirming their feasibility for energy storage. The specific capacitances from 450 to 1250 F/g were measured from the GCD curve. The MATLAB study gave quantitative data on critical electrode characteristics which improved the understanding of the performance and a framework for further investigation in the development of sustainable energy solutions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Waseem, A. Faizan, R. Nadeem, L. Yiwei, K. Ki-Hyun, Y. Jianhua, K. Sandeep, M. Andleeb, E. Eilhann, Recent advancements in supercapacitor technology. Nano Energy Volume. 52, 441–473 (October 2018)

  2. S. Zaharaddeen, C. ubramani, S. Dash, A brief review on Electrode materials for Supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016)

    Article  Google Scholar 

  3. Y. Jing, L. Hongwei, N. Wayde, L. Ray, Synthesis and characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodisc. J. Phys. Chem. C 114(1), 111–119 (2010)

    Article  Google Scholar 

  4. R. Jayashree, K. Vishnu, Electrochemical synthesis of α-cobalt hydroxide. J. Mater. Chem. 9, 961–963 (1999)

    Article  CAS  Google Scholar 

  5. M.S.M. Gadwal, S.D. Sartale, V.L. Mathe, H.M. Pathan, Substrate assisted electrochemical deposition of patterned cobalt thin films. Electrochem. Commun. 11(8), 1711–1713 (2009)

    Article  CAS  Google Scholar 

  6. W.-J. Zhou, M.-W. Xu, D.-D. Zhao, C.-L. Xu, H.L. Li, Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous Mesoporous Mater. 117(1–2), 55–60 (2009)

    Article  CAS  Google Scholar 

  7. T. Deng, W. Zhang, O. Arcelus et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun., 8, 1, Article ID 15194, 2017

  8. E. Hosono, S. Fujihara, I. Honma, Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. J. Mater. Chem. 15, 1938–1945 (2005)

    Article  CAS  Google Scholar 

  9. R.S. Jayashree, P.V. Kamath, Electrochemical synthesis of α-cobalt hydroxide. J. Mater. Chem. 9(4), 961–963 (1999)

    Article  CAS  Google Scholar 

  10. P. Jeevanan, Y. Koltypin, A. Gedanken, Y. Masatai, Synthesis of α-cobalt(II) hydroxide using ultrasound radiation. J. Mater. Chem. 9(2), 511–514 (1999)

    Google Scholar 

  11. P.V. Kamath, M. Dixit, L. Indira, Stabilized α - ni(OH)2 as Electrode Material for Alkaline secondary cells. J. Electrochem. Soc. 141(11), 2956–2959 (1994)

    Article  CAS  Google Scholar 

  12. Z. Sun, Y. Zhai, L. Zheng, W. Guo, W. Dong, Z. Fang, J. Tang, Cobalt-phthalocyanine-modified two-dimensional cobalt hydroxide complexes for highly selective electrocatalytic reduction of CO 2 to CO. J. Mater. Chem. A 11(3), 1123–1128 (2023)

    Article  CAS  Google Scholar 

  13. W. Hu, H. Fu, L. Chen, X. Wu, B. Geng, Y. Huang, Q. Zheng, Synthesis of amorphous nickel-cobalt hydroxides with high areal capacitance by one-step electrodeposition using polymeric additive. Chem. Eng. J. 451, 138613 (2023)

    Article  CAS  Google Scholar 

  14. J. Lee, J. Jang, T. Yu, A facile aqueous-phase synthesis of co-based nanostructures composed of cobalt hydroxide and cobalt oxide for enhanced photocatalytic activity of dye-sensitized H2 production. J. Alloys Compd. 942, 169078 (2023)

    Article  CAS  Google Scholar 

  15. M.B. Poudel, A.A. Kim, P.C. Lohani, D.J. Yoo, H.J. Kim, Assembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitor. J. Energy Storage. 60, 106713 (2023)

    Article  Google Scholar 

  16. X. Cheng, Y. Tong, Interface coupling of cobalt hydroxide/molybdenum disulfide heterostructured nanosheet arrays for highly efficient hydrazine-assisted hydrogen generation. ACS Sustain. Chem. Eng. 11(8), 3219–3227 (2023)

    Article  CAS  Google Scholar 

  17. R. Mehdizadeh, L.A. Saghatforoush, S. Sanati, Synthesis and characterization of ZnO and CuO and Co(OH)2 nanostructures by the solvothermal method without any additive. J. Chin. Chem. Soc. 60(3), 339–344 (2013)

    Article  CAS  Google Scholar 

  18. J.M. Miller, B. Dunn, T.D. Tran, R.W. Pekala, Electrochemical capacitors for energy management. J. Electrochem. Soc. 144(5889), 89–107 (1997)

    Google Scholar 

  19. M. Min, K. Machida, J.H. Jang, K. Naoi, Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153(2), A334–338 (2006)

    Article  CAS  Google Scholar 

  20. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High-power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997)

    Article  CAS  Google Scholar 

  21. H.R. Oswald, R. Asper, Preparation and Crystal Growth of materials with layered structures edited by Reidel D (Publishing Company. Holand). 1, 71–103 (1977)

    CAS  Google Scholar 

  22. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources. 157(1), 11–27 (2006)

    Article  CAS  Google Scholar 

  23. T.N. Ramesh, P.V. Kamath, C. Shivakumara, Correlation of structural disorder with the reversible discharge capacity of nickel hydroxide electrode. J. Electrochem. Soc. 152(4), A806–810 (2005)

    Article  CAS  Google Scholar 

  24. Y.Z. Shao, J. Sun, L. Gao, Hydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxide. J. Phys. Chem. C 113(16), 6566–6572 (2009)

    Article  CAS  Google Scholar 

  25. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(5), 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced Asymmetrical Supercapacitors based on Graphene Hybrid materials. Nano Res. 4(8), 729–736 (2011)

    Article  CAS  Google Scholar 

  27. X.-F. Wang, Y. Zheng, D.-B. Ruan, A hybrid metal oxide supercapacitor in aqueous KOH Electrolyte. Chin. J. Chem. 24(9), 1126–1132 (2006)

    Article  CAS  Google Scholar 

  28. Y. Wang, W. Yang, C. Chen, R. Ding, C. Ron, Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. J. Power Sources. 184(2), 682–690 (2008)

    Article  CAS  Google Scholar 

  29. M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4301 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. N.-L. Wu, Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75(1), 6–11 (2006)

    Google Scholar 

  31. X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 17(39), 10898–10905 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. W. Xiaobo, Z. Bai, Z. Dong, Z. Fuyan, Friction behavior of Mg–Al–CO3 layered double hydroxide prepared by magnesite. Lubr. Eng. 57, 36–39 (2001)

    Google Scholar 

  33. M.S. Yarger, E.M. Steinmiller, K.S. Choi, Electrochemical synthesis of cobalt hydroxide films with tunable interlayer spacings. Chem. Commun. 14, 159–161 (2007)

    Article  Google Scholar 

  34. T. Zhao, H. Jiang, J. Ma, Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J. Power Sources. 196(2), 860–864 (2011)

    Article  CAS  Google Scholar 

  35. Y.A. Shardt, (2023). Introduction to MATLAB®. Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book Statistics for Chemical and Process Engineers (1–7). Cham: Springer Nature Switzerland

    Chapter  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Aqueel Ahmad Shah (Principal, Maulana Mukhtar Ahmad Nadvi Technical Campus) for providing lab facilities to perform the experiments. I am also thankful to Dr. Dilawar Husain (Associate Professor, MMANTC) for his motivation and valuable guidance in writing, publishing, and presenting the research work.

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

An author has prepared this manuscript independently.

Corresponding author

Correspondence to Sajid Naeem.

Ethics declarations

Conflict of interest

All the data used in this research work are cited in the manuscript. Therefore, no conflict of interest related to any person or agency for this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeem, S. Electrodeposited Cobalt Hydroxide Thin Films: A Comprehensive Investigation from Synthesis to Advanced Electrochemical Behavior for High-Performance Energy Storage. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00542-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00542-3

Keywords

Navigation