Skip to main content
Log in

Reducing the Drain Leakage Current in a Double-Gate Junctionless MOSFET Using the Electron Screening Effect

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigated the position of electrons and holes in the ON and OFF states of double-gate junctionless transistors, and then three structures were proposed to create an electron-filled region exposing the drain-side inside the channel to the electron screening effect. Formation of an electron cloud in the channel and on the drain-side damps the electric field resulting from the drain voltage as the electric field passes through the electron cloud before reaching the main channel. Accordingly, in the structure with a drain-side gate, with the electric field decay introduced by the drain to the main channel, the carrier density increased compared to other structures, eventually reducing drain leakage current and improving the channel length modulation (CLM), threshold voltage, drain induced barrier lowering effect, and subthreshold slope in this structure. In the N+ pocket structure, despite the decrease in the electric field resulting from the drain voltage, the drain leakage current and the CLM were increased. In the N+ SiGe pocket structure, although the electric field resulting from the drain voltage along the channel length was reduced compared to the main structure, the drain leakage current and CLM experienced an increase. Moreover, the results showed that at low drain voltages, the drain leakage current in the N+ pocket structure was higher than that of the N+ SiGe pocket, but at high drain voltages, the order was reversed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Deleonibus, Electronic Device Architectures for the Nano-CMOS Era: from Ultimate CMOS Scaling to beyond CMOS Devices (Jenny Stanford Publishing, 2019).

  2. R.J. Baker, CMOS Circuit Design, Layout, and Simulation Wiley, Hoboken, 2019

    Google Scholar 

  3. S. Zafar, M.A. Raushan, S. Ahmad, and M.J. Siddiqui, Semicond. Sci. Technol., 2019, 35, p 015016.

    Article  Google Scholar 

  4. N. D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.-P. Colinge, IEEE 2011 International SOI Conference (2011).

  5. S. Moghaddam, S.S. Ghoreishi, R. Yousefi, and H. Aderang, Superlattices Microstruct., 2020, 138, p 106239.

    Article  CAS  Google Scholar 

  6. E. Datta, A. Chattopadhyay, and A. Mallik, J. Electron. Mater., 2020, 49, p 3309.

    Article  CAS  Google Scholar 

  7. J.P. Duarte, M.-S. Kim, S.-J. Choi, and Y.-K. Choi, IEEE Trans. Electron Devices, 2012, 59, p 1008.

    Article  CAS  Google Scholar 

  8. A.K. Bansal, C. Gupta, A. Gupta, R. Singh, T.B. Hook, and A. Dixit, IEEE Trans. Electron Devices, 2018, 65, p 1246.

    Article  CAS  Google Scholar 

  9. M.A. Pavanello, A. Cerdeira, R.T. Doria, T.A. Ribeiro, F. Ávila-Herrera, and M. Estrada, Solid-State Electron., 2019, 159, p 116.

    Article  CAS  Google Scholar 

  10. P. Bal, M.W. Akram, P. Mondal, and B. Ghosh, J. Comput. Electron., 2013, 12, p 782.

    Article  Google Scholar 

  11. R.M.I. Abadi, and M. Saremi, J. Electron. Mater., 2017, 47, p 1091.

    Article  Google Scholar 

  12. A. Rassekh, F. Jazaeri, M. Fathipour, and J.-M. Sallese, IEEE Trans. Electron Devices, 2019, 66, p 4653.

    Article  CAS  Google Scholar 

  13. H. Mehta, and H. Kaur, IEEE Trans. Electron Devices, 2018, 65, p 2699.

    Article  CAS  Google Scholar 

  14. Y.V. Bhuvaneshwari, and A. Kranti, Semicond. Sci. Technol., 2018, 33, p 115020.

    Article  Google Scholar 

  15. G.C. Patil, V.H. Bonge, M.M. Malode, and R.G. Jain, Superlattices Microstruct., 2016, 90, p 247.

    Article  CAS  Google Scholar 

  16. F. Larki, M.S. Islam, A. Dehzangi, M.T. Islam, and H.Y. Wong, Electronics, 2019, 8, p 538.

    Article  CAS  Google Scholar 

  17. H.Y. Wong, N. Braga, and R.V. Mickevicius, IEEE Trans. Electron Dev., 2018, 65, p 4004.

    Article  CAS  Google Scholar 

  18. Y. Wang, C. Shan, Z. Dou, L.-G. Wang, and F. Cao, Microelectron. Reliab., 2015, 55, p 318.

    Article  CAS  Google Scholar 

  19. F. Jazaeri, L. Barbut, A. Koukab, and J.-M. Sallese, Solid-State Electron., 2013, 82, p 103.

    Article  CAS  Google Scholar 

  20. A. Garg, B. Singh, and Y. Singh, AEU Int. J. Electron. Commun., 2020, 118, p 153140.

    Article  Google Scholar 

  21. M.H.R. Ansari, N. Navlakha, J.Y. Lee, and S. Cho, IEEE Trans. Electron Dev., 2020, 67, p 1471.

    Article  CAS  Google Scholar 

  22. S. Shreya, N. Kumar, S. Anand, and I. Amin, J. Electron. Mater., 2020, 49, p 2349.

    Article  CAS  Google Scholar 

  23. V. Narula, and M. Agarwal, Semicond. Sci. Technol., 2019, 34, p 105014.

    Article  CAS  Google Scholar 

  24. R.K. Baruah, and R.P. Paily, IEEE Trans. Electron. Dev., 2014, 61, p 123.

    Article  CAS  Google Scholar 

  25. H. Mehta, and H. Kaur, Adv. Nat. Sci. Nanosci. Nanotechnol., 2019, 10, p 035013.

    Article  CAS  Google Scholar 

  26. S. Sze, and K.K. Ng, Physics of Semiconductor Devices, 3rd edn. Wiley, Hoboken, 2006

    Book  Google Scholar 

  27. F. Shimura, Springer Handbook of Electronic and Photonic Materials 1 (2017).

  28. M. Tilli and A. Haapalinna, Handbook of Silicon Based MEMS Materials and Technologies 3 (2010).

  29. F. Palumbo, C. Wen, S. Lombardo, S. Pazos, F. Aguirre, M. Eizenberg, F. Hui, and M. Lanza, Adv. Func. Mater., 2019, 30, p 1900657.

    Article  Google Scholar 

  30. H. Bartzsch, D. Glöß, B. Böcher, P. Frach, and K. Goedicke, Surf. Coat. Technol., 2003, 174–175, p 774.

    Article  Google Scholar 

  31. ATLAS User’s Manual, Santa Clara, CA SILVACO International, USA, 2016

    Google Scholar 

  32. C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, Appl. Phys. Lett., 2009, 94, p 053511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Abbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavir, M., Abbasi, A. & Orouji, A.A. Reducing the Drain Leakage Current in a Double-Gate Junctionless MOSFET Using the Electron Screening Effect. J. Electron. Mater. 50, 2605–2617 (2021). https://doi.org/10.1007/s11664-021-08801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08801-2

Keywords

Navigation