Skip to main content
Log in

Quasi-3D Perfect Absorber Based on the Self-Similar Parasitic Elements as an Optical Sensor with Tunable Attributes for Near-Infrared Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have designed a novel self-similar plasmonic perfect absorber with a quasi-three-dimensional (3D) shape based on parasitic elements, which is useful as a refractive index sensor for near-infrared applications. In order to achieve tunable attributes, we have applied the liquid crystal medium to provide a tunable structure which can be considered to control the absorption parameter and resonances. In fact, we have proposed a self-similar structure to obtain a multi-band structure in the range of 800–1600 nm with an absorption value up to 99.8%. The basic model is a single cross element, while each quarter is filled up by L-shaped elements by forming a tapered shape like a pyramidal in which the elements are arranged from large to small with various heights and lengths which creates a ziggurat form. So this structure can provide a quad-band absorber which we have implemented as a refractive index sensor with a much higher figure of merit (FOM) in comparison to the flat formations. For the final structure, the maximum values of the FOM and sensitivity (S) are 24,560 RIU−1 and 660 nm RIU−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Cui, D.R. Smith, and R. Liu, Metamaterials (New York: Springer, 2010).

    Book  Google Scholar 

  2. M.K. Hedayati, F. Faupel, and M. Elbahri, Materials 7, 1221 (2014).

    Article  CAS  Google Scholar 

  3. J. Luo, J. Gong, X. Zhang, A. Ji, C. Xie, and T. Zhang, Optik 125, 386 (2014).

    Article  Google Scholar 

  4. A. Nejati, F.B. Zarrabi, M. Rahimi, and Z. Mansouri, Optik 126, 2153 (2015).

    Article  CAS  Google Scholar 

  5. G. Deng, J. Yang, and Z. Yin, Appl. Opt. 56, 2449 (2017).

    Article  CAS  Google Scholar 

  6. M. Giloan and S. Astilean, Opt. Commun. 315, 122 (2014).

    Article  CAS  Google Scholar 

  7. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  CAS  Google Scholar 

  8. V.G. Veselago, Sov. Phys. Usp 10, 509 (1968).

    Article  Google Scholar 

  9. Z.Y. Liu, Y. Chen, J. Li, T.C. Hung, and J. Li, Sol. Energy 86, 1586 (2012).

    Article  CAS  Google Scholar 

  10. J. Yao, K.T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y.L. Wang, and X. Zhang, Opt. Express 17, 22380 (2009).

    Article  CAS  Google Scholar 

  11. X. Wen, Q. Zhang, J. Chai, L.M. Wong, S. Wang, and Q. Xiong, Opt. Express 22, 2989 (2014).

    Article  Google Scholar 

  12. S.N. Novin, F.B. Zarrabi, M. Bazgir, S. Heydari, and S. Ebrahimi, Silicon 11, 293 (2019).

    Article  CAS  Google Scholar 

  13. N.H. Anous and D.A. Khalil, Appl. Opt. 53, 2515 (2014).

    Article  CAS  Google Scholar 

  14. N.J. Halas, S. Lal, W.S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011).

    Article  CAS  Google Scholar 

  15. K.M. Mayer and J.H. Hafner, Chem. Rev. 111, 3828 (2011).

    Article  CAS  Google Scholar 

  16. E. Hutter and J.H. Fendler, Adv. Mater. 16, 1685 (2004).

    Article  CAS  Google Scholar 

  17. A. Farmani, JOSA B 36, 401 (2019).

    Article  CAS  Google Scholar 

  18. H. Durmaz, Y. Li, and A.E. Cetin, Sens. Actuators B 275, 174 (2018).

    Article  CAS  Google Scholar 

  19. Z. Chen, L. Cui, X. Song, L. Yu, and J. Xiao, Opt. Commun. 340, 1 (2015).

    Article  CAS  Google Scholar 

  20. K.A. Willets and R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

    Article  CAS  Google Scholar 

  21. P. Jahangiri, F.B. Zarrabi, M. Naser-Moghadasi, A.S. Arezoomand, and S. Heydari, Opt. Commun. 394, 80 (2017).

    Article  CAS  Google Scholar 

  22. H. Luo and Y.Z. Cheng, Mod. Phys. Lett. B 31, 1750231 (2017).

    Article  CAS  Google Scholar 

  23. A.S. Arezoomand, F.B. Zarrabi, S. Heydari, and N.P. Gandji, Opt. Commun. 352, 121 (2015).

    Article  CAS  Google Scholar 

  24. G. Si, Y. Zhao, E.S.P. Leong, and Y.J. Liu, Materials 7, 1296 (2014).

    Article  CAS  Google Scholar 

  25. P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  CAS  Google Scholar 

  26. Y. Cheng, H. Zhang, X.S. Mao, and R. Gong, Mater. Lett. 219, 123 (2018).

    Article  CAS  Google Scholar 

  27. N.A. Hatab, C.H. Hsueh, A.L. Gaddis, S.T. Retterer, J.H. Li, G. Eres, Z. Zhang, and B. Gu, Nano Lett. 10, 4952 (2010).

    Article  CAS  Google Scholar 

  28. R. Rashiditabar, N. Nozhat, and M.S. Zare, Plasmonics 13, 1853 (2018).

    Article  CAS  Google Scholar 

  29. E. Aslan, E. Aslan, M. Turkmen, and O.G. Saracoglu, Opt. Mater. 73, 213 (2017).

    Article  CAS  Google Scholar 

  30. C. Cao and Y. Cheng, Appl. Phys. A 125, 15 (2019).

    Article  CAS  Google Scholar 

  31. F.J. Jafari, M. Naderi, A. Hatami, F.B. Zarrabi, and A.E.U. Int, J. Electron. Commun. 101, 138 (2019).

    Google Scholar 

  32. Z. Madadi, K. Abedi, G. Darvish, and M. Khatir, Optik 183, 670 (2019).

    Article  CAS  Google Scholar 

  33. Y. Cheng, X.S. Mao, C. Wu, L. Wu, and R. Gong, Opt. Mater. 53, 195 (2016).

    Article  CAS  Google Scholar 

  34. Y.Q. Ye, Y. Jin, and S. He, JOSA B 27, 498 (2010).

    Article  CAS  Google Scholar 

  35. S. Gottheim, H. Zhang, A.O. Govorov, and N.J. Halas, ACS Nano 3, 3284 (2015).

    Article  CAS  Google Scholar 

  36. A.E. Dorche, S. Abdollahramezani, A. Chizari, and A. Khavasi, IEEE Photonics Technol. Lett. 28, 2545 (2016).

    Article  CAS  Google Scholar 

  37. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, Opt. Express 24, 25742 (2016).

    Article  CAS  Google Scholar 

  38. B. Abasahl, C. Santschi, and O.J. Martin, Acs Photonics 1, 403 (2014).

    Article  CAS  Google Scholar 

  39. A. Sakurai, B. Zhao, and Z.M. Zhang, J. Quant. Spectrosc. Radiat. Transf. 149, 33 (2014).

    Article  CAS  Google Scholar 

  40. S. Kang, Z. Qian, V. Rajaram, S.D. Calisgan, A. Alù, and M. Rinaldi, Adv. Opt. Mater. 7, 1801236 (2019).

    Article  CAS  Google Scholar 

  41. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

  42. F.B. Zarrabi, R. Hekmati, M. Bazgir, and S. Ebrahimi, Opt. Quantum Electron. 50, 452 (2018).

    Article  Google Scholar 

  43. F.B. Zarrabi, M. Bazgir, and R. Hekmati, IEEE Photonics Technol. Lett. 31, 779 (2019).

    Article  CAS  Google Scholar 

  44. E. Shokati, N. Granpayeh, and M. Danaeifar, Appl. Opt. 56, 3053 (2017).

    Article  Google Scholar 

  45. O. Sova, V. Reshetnyak, and T. Galstian, JOSA A 34, 424 (2017).

    Article  Google Scholar 

  46. Z. Su, J. Yin, and X. Zhao, Sci. Rep. 5, 16698 (2015).

    Article  CAS  Google Scholar 

  47. M.R. Rakhshani and M.A. Mansouri-Birjandi, Sens. Actuators B 249, 168 (2017).

    Article  CAS  Google Scholar 

  48. F. Tavakoli and S. Ebrahimi, Opt. Quantum Electron. 51, 185 (2019).

    Article  CAS  Google Scholar 

  49. Z. Chen and L. Yu, IEEE Photonics J. 6, 1 (2014).

    Google Scholar 

  50. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).

    Article  CAS  Google Scholar 

  51. M.R. Rakhshani and M.A. Mansouri-Birjandi, IEEE Sens. J. 16, 3041 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Sadeghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, F., Sadeghzadeh, R.A. Quasi-3D Perfect Absorber Based on the Self-Similar Parasitic Elements as an Optical Sensor with Tunable Attributes for Near-Infrared Application. J. Electron. Mater. 49, 3269–3281 (2020). https://doi.org/10.1007/s11664-020-08018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08018-9

Keywords

Navigation