Skip to main content
Log in

Fabrication of Superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE Electrode and Application in Wastewater Treatment

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

SnO2-Sb and α-PbO2 have been successively deposited onto the surface of a titanium substrate, followed by fabrication of β-PbO2 doped with Fe element and polytetrafluoroethylene (PTFE) thereon. Due to the collaborative contribution of α-PbO2 and PTFE, the stability of the Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE electrode was found to be significantly improved. The oxygen evolution overpotential of the electrode was measured to be 1.95 V versus saturated calomel electrode (SCE). Also, the contact angle of the optimized superhydrophobic electrode reached 156.8°. The optimized superhydrophobic electrode modified with PTFE exhibited lower charge-transfer resistance and good oxidative ability towards organics. The electrocatalytic activity of the devised electrodes was studied using methyl orange degradation. Factors affecting the decolorization of methyl orange were optimized. After 30 min of electrolysis, a maximum removal efficiency of 83% was achieved at a current density of 30 mA cm−2 for an initial methyl orange concentration of 40 mg L−1 at pH 5. The results confirmed that the decolorization followed a first-order kinetics model. The color of the methyl orange solution changed from orange to colorless upon completion of the degradation reaction. Such superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE electrodes could effectively degrade organic pollutants under low voltages, which is of great significance for reducing energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Tsantaki, T. Velegraki, A. Katsaounis, and D. Mantzavinos, J. Hazard. Mater. 207, 91 (2012).

    Article  Google Scholar 

  2. M. Zhou and J. He, J. Hazard. Mater. 153, 357 (2008).

    Article  CAS  Google Scholar 

  3. C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, and O. Scialdone, Chem. Rev. 115, 13362 (2015).

    Article  Google Scholar 

  4. C.A. Martinez-Huitle and E. Brillas, Appl. Catal. B-Environ. 87, 105 (2009).

    Article  CAS  Google Scholar 

  5. E. Brillas and C.A. Martínez-Huitle, Appl. Catal. B-Environ. 166, 603 (2015).

    Article  Google Scholar 

  6. H. Lin, J. Niu, J. Xu, Y. Li, and Y. Pan, Electrochim. Acta 97, 167 (2013).

    Article  CAS  Google Scholar 

  7. Á. Anglada, A. Urtiaga, and I. Ortiz, J. Chem. Technol. Biotechnol. 84, 1747 (2009).

    Article  CAS  Google Scholar 

  8. Z. Xu, H. Liu, J. Niu, Y. Zhou, C. Wang, and Y. Wang, J. Hazard. Mater. 327, 144 (2017).

    Article  CAS  Google Scholar 

  9. P. Duan, X. Yang, G. Huang, J. Wei, Z. Sun, and X. Hu, Colloids Surf. A 569, 119 (2019).

    Article  CAS  Google Scholar 

  10. X. Duan, C. Zhao, W. Liu, X. Zhao, and L. Chang, Electrochim. Acta 240, 424 (2017).

    Article  CAS  Google Scholar 

  11. X. Li, H. Xu, and W. Yan, Appl. Surf. Sci. 389, 278 (2016).

    Article  CAS  Google Scholar 

  12. M. Xu, Z. Wang, F. Wang, P. Hong, C. Wang, X. Ouyang, C. Zhu, Y. Wei, Y. Hun, and W. Fang, Electrochim. Acta 201, 240 (2016).

    Article  CAS  Google Scholar 

  13. Z. Xu, Y. Yu, H. Liu, and J. Niu, Sci. Total Environ. 579, 1600 (2017).

    Article  CAS  Google Scholar 

  14. Q. Zhang, X. Guo, X. Cao, D. Wang, and J. Wei, Chin. J. Catal. 36, 975 (2015).

    Article  CAS  Google Scholar 

  15. X. Li, D. Pletcher, and F.C. Walsh, Chem. Soc. Rev. 40, 3879 (2011).

    Article  CAS  Google Scholar 

  16. F. Fu, W. Yang, and C. Ke, Mater. Chem. Phys. 220, 155 (2018).

    Article  CAS  Google Scholar 

  17. S. Abaci, U. Tamer, K. Pekmez, and A. Yildiz, Electrochim. Acta 50, 3655 (2005).

    Article  CAS  Google Scholar 

  18. J.M. Aquino, R.C. Rocha-Filho, L.A.M. Ruotolo, N. Bocchi, and S.R. Biaggio, Chem. Eng. J. 251, 138 (2014).

    Article  CAS  Google Scholar 

  19. J. Wu, H. Xu, and W. Yan, RSC Adv. 5, 19284 (2015).

    Article  CAS  Google Scholar 

  20. J. Niu, H. Lin, J. Xu, H. Wu, and Y. Li, Environ. Sci. Technol. 46, 10191 (2012).

    Article  CAS  Google Scholar 

  21. R. Inguanta, E. Rinaldo, S. Piazza, and C. Sunseri, J. Solid State Electrochem. 16, 3939 (2012).

    Article  CAS  Google Scholar 

  22. A. Moncada, M.C. Mistretta, S. Randazzo, S. Piazza, C. Sunseri, and R. Inguanta, J. Power Sources 256, 72 (2014).

    Article  CAS  Google Scholar 

  23. P.N. Bartlett, T. Dunford, and M.A. Ghanem, J. Mater. Chem. 12, 3130 (2002).

    Article  CAS  Google Scholar 

  24. Z. Wang, Y. Mao, M. Xu, Y. Wei, Y. Hu, C. Zhu, W. Fang, and F. Wang, J. Electrochem. Soc. 164, H981 (2017).

    Article  CAS  Google Scholar 

  25. T. Chen, X. Li, C. Qiu, W. Zhu, H. Ma, S. Chen, and O. Meng, Biosens. Bioelectron. 53, 200 (2014).

    Article  CAS  Google Scholar 

  26. M. Panizza and G. Cerisola, Chem. Rev. 109, 6541 (2009).

    Article  CAS  Google Scholar 

  27. J.P. Carr and N.A. Hampson, Chem. Rev. 72, 679 (1972).

    Article  CAS  Google Scholar 

  28. G. Zhao, Y. Zhang, Y. Lei, B. Lv, J. Gao, Y. Zhang, and D. Li, Environ. Sci. Technol. 44, 1754 (2010).

    Article  CAS  Google Scholar 

  29. R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, L. Bottomley, D. Li, Y. Chen, and J. Crittenden, Appl. Catal. B-Environ. 203, 515 (2017).

    Article  CAS  Google Scholar 

  30. Y. Jin, F. Wang, M. Xu, Y. Hun, W. Fang, Y. Wei, and C. Zhu, J. Taiwan Inst. Chem. E 51, 135 (2015).

    Article  CAS  Google Scholar 

  31. C. Yang, Y. Wang, B. Hu, H. Zhang, Y. Lv, and X. Zhou, J. Electron. Mater. 47, 5965 (2018).

    Article  CAS  Google Scholar 

  32. T. Darmanin, E.T. de Givenchy, S. Amigoni, and F. Guittard, Adv. Mater. 25, 1378 (2013).

    Article  CAS  Google Scholar 

  33. E. Vazirinasab, R. Jafari, and G. Momen, Surf. Coat. Technol. 341, 40 (2018).

    Article  CAS  Google Scholar 

  34. G. He, S. Lu, W. Xu, P. Ye, G. Liu, H. Wang, and T. Dai, J. Alloys Compd. 747, 772 (2018).

    Article  CAS  Google Scholar 

  35. X. Xing, J. Ni, X. Zhu, Y. Jiang, and J. Xia, Chemosphere 205, 361 (2018).

    Article  CAS  Google Scholar 

  36. Y. Jiang, Z. Hu, M. Zhou, L. Zhou, and B. Xi, Sep. Purif. Technol. 128, 67 (2014).

    Article  CAS  Google Scholar 

  37. R. Kotz, S. Stucki, and B. Carcer, J. Appl. Electrochem. 21, 14 (1991).

    Article  Google Scholar 

  38. Z. Wang, M. Xu, F. Wang, X. Liang, Y. Wei, Y. Hu, C.G. Zhu, and W. Fang, Electrochim. Acta 247, 535 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (No. 21676146) and the Financial Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Lv, Y., Yang, C. et al. Fabrication of Superhydrophobic Ti/SnO2-Sb/α-PbO2/Fe-β-PbO2-PTFE Electrode and Application in Wastewater Treatment. J. Electron. Mater. 49, 2411–2418 (2020). https://doi.org/10.1007/s11664-019-07936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07936-7

Keywords

Navigation