Skip to main content
Log in

Formation of lead by reduction of electrodeposited PbO2: comparison between bulk films and nanowires fabrication

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Metallic lead was deposited, both in form of bulk films and nanowire array within pores of anodic alumina membranes, following a new two-step procedure, consisting in anodic electrodeposition of α-PbO2, followed by its reduction to metallic lead. This method allows to overcome drawbacks of the “direct” electrodeposition of lead from aqueous solution, consisting, essentially, in the formation of dendritic deposits. Here, we report the comparison between results obtained in the two cases and discuss the kinetic of oxide reduction both for films and nanowires. Deposit morphology and structure are also discussed. We have found that reduction of α-PbO2 films proceeds always at high speed and unitary efficiency, with the formation of polycrystalline compact films. Unfortunately, these films present cracks due to the volume shrinkage accompanying the conversion of α-PbO2 into Pb metal. In addition, α-PbO2 nanowires reduction proceeds up to a complete conversion to metallic Pb, which present a characteristic “sausage-like” shape caused by the lower molar volume of metal with respect to oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Saravanam M, Ganesan M, Ambalavanam S (2012) J Electrochem Soc 159:A452–A458

    Article  Google Scholar 

  2. Pan K, Shi G, Li A, Li H, Zhao R, Wang F, Zhang W, Chen Q, Chen H, Xiong Z, Finlow D (2012) J Power Sourc 209:262–268

    Article  CAS  Google Scholar 

  3. Krivik P, Micka K, Baca P, Tonar K, Toser P (2012) J Power Sourc 209:15–19

    Article  CAS  Google Scholar 

  4. Kazarinov I, Burashnikova M, Khomskaya E, Kadnikova N (2012) J Power Sourc 209:289–294

    Article  CAS  Google Scholar 

  5. Huang T, Ou W, Feng B, Huang B, Liu M, Zhao W, Guo Y (2012) J Power Sourc 210:7–14

    Article  CAS  Google Scholar 

  6. Wills R, Collins J, Stratton-Campbell D, Low C, Pletcher D, Walsh F (2010) J Appl Electrochem 40:955–965

    Article  CAS  Google Scholar 

  7. Zhang C, Sharkh S, Li X, Walsh F, Zhang C, Jiang J (2011) Energ Convers Manag 52:3391–3398

    Article  CAS  Google Scholar 

  8. Eghtedarpour N, Farjah E (2012) Renew Energ 45:96–110

    Article  Google Scholar 

  9. Lujano-Rojas J, Monteiro C, Dufo-Lopez R, Bernal-Agustin J (2012) Renew Energ 44:288–295

    Article  Google Scholar 

  10. Bajpai P, Dash V (2012) Renew Sustain Energ Rev 16:2926–2939

    Article  Google Scholar 

  11. Broussely M, Pistoia G (2007) Industrial application of batteries. From cars to aerospace and energy storage. Elsevier, Amsterdam

    Google Scholar 

  12. Cugnet M, Sabatier J, Laruelle S, Grugeon S, Chanteur I, Sahut B, Oustaloup A, Tarascon J-M (2009) ECS Trans 19:77–88

    Article  CAS  Google Scholar 

  13. Pistoia G (2010) Electric and hybrid vehicles. Elsevier, Amsterdam

    Google Scholar 

  14. Pistoia G (2009) Battery operated devices and systems. Elsevier, Amsterdam

    Google Scholar 

  15. Karami H, Yaghoobi A, Ramazani A (2010) Int J Electrochem Sci 5:1046–1059

    CAS  Google Scholar 

  16. Karami H, Karimi M, Haghdar S, Sadeghi A, Mir-Ghasemi R, Mahdi-Khani S (2008) Mater Chem Phys 108:337–344

    Article  CAS  Google Scholar 

  17. Morales J, Petkova G, Cruz M, Caballero A (2004) Electrochem Solid State Lett 7:A75–A77

    Article  CAS  Google Scholar 

  18. Egan D, Low C, Walsh F (2011) J Power Sourc 196:5725–5730

    Article  CAS  Google Scholar 

  19. Park M-H, Kim M, Joo J, Kim K, Kim J, Ahn S, Cho J (2009) Nano Letters 9:3844–3847

    Article  CAS  Google Scholar 

  20. Ferrara G, Arbizzani C, Danem L, Guidotti M, Lazzari M, Vergottini F, Inguanta R, Piazza S, Sunseri C, Mastragostino M (2012) J Power Sourc 211:103–107

    Article  CAS  Google Scholar 

  21. Hasan M, Chowdhury T, Rohan J (2010) J Electrochem Soc 157:A682–A688

    Article  CAS  Google Scholar 

  22. Taberna P, Mistra S, Poizot P, Simon P, Tarascon J-M (2006) Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  23. Cheah S, Perre E, Rooth M, Fondell M, Harsta A, Nyholm L, Bonam M, Gustafsson T, Lu J, Simon P, Edstrom K (2009) Nano Letters 9:3230–3233

    Article  CAS  Google Scholar 

  24. Perret P, Khani Z, Brousse T, Belanger D, Guay D (2011) Electrochim Acta 56:8122–8128

    Article  CAS  Google Scholar 

  25. Gowda S, Reddy A, Zhan X, Ajayan P (2011) Nano Letters 11:3329–3333

    Article  CAS  Google Scholar 

  26. Hochbaun A, Yang P (2010) Chem Rev 110:527–546

    Article  Google Scholar 

  27. Hiralal P, Unalan H, Amaratunga G (2012) Nanotechnol 23:194002

    Article  Google Scholar 

  28. Yu K, Chen J (2009) Nanoscale Res Lett 4:1–10

    Article  CAS  Google Scholar 

  29. Inguanta R, Piazza S, Sunseri C (2008) J Electrochem Soc 155:K205–K210

    Article  CAS  Google Scholar 

  30. Inguanta R, Vergottini F, Ferrara G, Piazza S, Sunseri C (2010) Electrochim Acta 55:8556–8562

    Article  CAS  Google Scholar 

  31. Perret P, Brousse T, Belanger D, Guay D (2009) J Electrochem Soc 156:A645–A651

    Article  CAS  Google Scholar 

  32. Jordan M (2010) In: Schlesinger M, Paunivic M (eds) Modern electroplating. Wiley, New York, p 361

  33. Nikolic N, Brankovic G, Lacnjevac U (2012) J Solid State Electr 16:2121–2126

    Article  CAS  Google Scholar 

  34. Popov KI, Krstajic NV, Pantelic RM (1985) Surf Technol 26:177–183

    Article  CAS  Google Scholar 

  35. Kuhn AT (1979) The electrochemistry of lead. Academic, London

    Google Scholar 

  36. Ghali E, Girgs M (1985) Metall Trans B 16:489–496

    Article  Google Scholar 

  37. López Valdivieso A, Reyes Bahena JL, Songa S, Herrera Urbina R (2006) J Colloid Interface Sci 298:1–5

    Article  Google Scholar 

  38. Inguanta R, Rinaldo E, Piazza S, Sunseri C (2010) Electrochem Solid State Lett 13:K1–K4

    Article  CAS  Google Scholar 

  39. International Centre for Diffraction Data (2007) Power diffraction file. ICDD, Philadelphia (card nos. 4-686 for Pb, 41-1487 for C, 36-1461 for PbSO4 and 72-2440 for α-PbO2)

  40. Pang Y-T, Meng G-W, Zhang L-D, Qin Y, Gao X-Y, Zhao A-W, Fang Q (2002) Adv Funct Mater 12:719–722

    Article  CAS  Google Scholar 

  41. Jin C, Li X (2007) Chem Bull 70:384–387

    CAS  Google Scholar 

  42. Pang Y-T, Meng G-W, Zhang L-D, Shan W, Gao X-Y, Zhao A-W, Mao Y (2002) J Phys Condens Matter 14:11729–11736

    Article  CAS  Google Scholar 

  43. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon, Oxford, 485

    Google Scholar 

  44. Bode H (1977) Lead-acid batteries. Wiley, New York

    Google Scholar 

  45. West A (1985) Solid state chemistry and its applications, Chap. 3. Wiley, Chichester

Download references

Acknowledgements

This work was supported financially by Università di Palermo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Piazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inguanta, R., Rinaldo, E., Piazza, S. et al. Formation of lead by reduction of electrodeposited PbO2: comparison between bulk films and nanowires fabrication. J Solid State Electrochem 16, 3939–3946 (2012). https://doi.org/10.1007/s10008-012-1842-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1842-0

Keywords

Navigation