Skip to main content
Log in

Wafer Flatness Modeling in Chemical Mechanical Polishing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Flatness is an important criteria for evaluating wafer quality. Chemical mechanical polishing (CMP) is an effective method to process wafers and to improve the wafer flatness. Therefore, a flatness model is necessary for optimizing CMP process variables through investigating the wafer surface formation mechanism as well as the influences of CMP parameters on the wafer flatness. However, most studies pay attention to the roughness change of a wafer surface. Besides, there is little literature about the flatness of CMP modeling wafers. In this study, a wafer flatness model based on the material removal during CMP was established. The surface pressure distribution of the wafer surface was obtained by finite element simulation. The relative velocity distribution of the abrasive particles and the wafer surface during polishing were acquired by the numerical simulation, introduced to develop the flatness model. Finally, the influences of different process parameters on flatness were investigated. The flatness model established agreement between the calculated and the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lee, D.I. Kim, H. Jeong, and K.H. Kwang, J. Korean Phys. Soc. 57, 845 (2010).

    Article  CAS  Google Scholar 

  2. H. Hocheng, H.Y. Tsai, and M.S. Tsai, Int. J. Mach. Tools Manuf. 40, 1651 (2000).

    Article  Google Scholar 

  3. Y.S. Xie and B. Bhushan, Wear 200, 281 (1996).

    Article  CAS  Google Scholar 

  4. Y.B. Tian, Y.J. Ang, Z.W. Zhong, H. Xu, and R. Tan, Mater. Manuf. Process. 28, 488 (2013).

    Article  CAS  Google Scholar 

  5. K. Hirose and T. Enomoto, in ASME International Manufacturing Science and Engineering Conference, Proceedings (2009), pp. 671–676.

  6. Z.W. Zhong, Y.B. Tian, Y.J. Ang, and H. Wu, Int. J. Adv. Manuf. Technol. 60, 1197 (2011).

    Article  Google Scholar 

  7. G.S. Lee, H.H. Hwang, C.H. Son, J.W. Choi, W.J. Lee, B.C. Shin, J.D. Seo, K.R. Ku, and H.D. Jeong, Mater. Sci. Forum (Trans tech, Durnten-zurich, 2009), pp. 615–617.

  8. Y. Zhou, G.S. Pan, X.L. Shi, H. Gong, G.H. Luo, and Z.H. Gu, Surf. Coat. Technol. 251, 48 (2014).

    Article  CAS  Google Scholar 

  9. D.X. Peng, Ind. Lubr. Tribol. 66, 685 (2014).

    Article  Google Scholar 

  10. C.F. Fang, Z.X. Zhao, L.Y. Lu, and Y.F. Lin, Int. J. Adv. Manuf. Technol. 88, 575 (2017).

    Article  Google Scholar 

  11. S. Sadakuni, J. Murata, K. Yagi, Y. Sano, K. Arima, T. Okamoto, K. Tachibana, and K. Yamauchi, Phys. Status Solidi C 8, 2223 (2011).

    Article  CAS  Google Scholar 

  12. X.K. Hu, Z.T. Song, Z.C. Pan, W.L. Liu, and L.C. Wu, Appl. Surf. Sci. 255, 8230 (2009).

    Article  CAS  Google Scholar 

  13. U. Satake, T. Enomoto, and K. Matsuda, in Procedia CIRP Proceedings(2012), pp. 675–676.

  14. Y. Park, H. Lee, Y. Lee, S. Park, and H. Jeong, Int. J. Precis. Eng. Manuf. 14, 1513 (2013).

    Article  Google Scholar 

  15. A. Une, K. Yoshitomi, M. Mochida, and N. Ogasawara, Microelectron. Eng. 87, 1646 (2010).

    Article  CAS  Google Scholar 

  16. P.L. Wang, Z.G. Dong, G. Ya, and Z.B. Duan, Sci. Technol. Eng. 18, 232 (2018) (in Chinese).

    Google Scholar 

  17. C.D. Alberto, L.P. Rafael, G.G. Jorge, and C.C. Jorge, Optik 124, 3909 (2013).

    Article  Google Scholar 

  18. Q.L. Yuan, H. Fu, S.J. Li, T.R. Jiang, and M.S. Yang, Mech. Sci. Technol. Aerospace. Eng. 37, 1969 (2018) (in Chinese).

    Google Scholar 

  19. Z.Z. Zhou, F.Y. Lou, B.H. Lu, and J.L. Yuan, China Mech. Eng. 20, 1207 (2009) (in Chinese).

    Google Scholar 

  20. J.X. Su, D.M. Guo, R.K. Kang, Z.J. Jin, and X.J. Li, China Mech. Eng. 09, 815 (2005) (in Chinese).

    Google Scholar 

  21. W.J. Wang and A.X. Wang, J. Harbin Inst. Technol. 50, 29 (2018) (in Chinese).

    CAS  Google Scholar 

  22. L. Shan, J. Levert, L. Meade, J. Tichy, and S. Danyluk, J. Tribol. Trans. ASME 122, 539 (2000).

    Article  CAS  Google Scholar 

  23. J.A. Levert, S. Danyluk, and J. Tichy, J. Tribol. Trans. ASME 122, 450 (2000).

    Article  Google Scholar 

  24. H.S. Oh and H.L. Lee, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 40, 5300 (2001).

    Article  CAS  Google Scholar 

  25. G.H. Zhong, Y.D. Ning, Q.G. Zhou, Y.Z. Bian, X. Wang, X. Qu, L. Wang, and E.J. Zhao, Mater. Sci. Semicond. Process. 68, 15 (2017).

    Article  CAS  Google Scholar 

  26. S.T. Hu, W.F. Huang, X. Shi, Z.K. Peng, X.F. Liu, and Y.M. Wang, Tribol. Lett. 66, 3 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundamental Research Funds for the Central Universities (2019JBM049). The authors are grateful for the help of Dr. Wenxi WANG on English text improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Li, J., Yi, D. et al. Wafer Flatness Modeling in Chemical Mechanical Polishing. J. Electron. Mater. 49, 353–363 (2020). https://doi.org/10.1007/s11664-019-07799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07799-y

Keywords

Navigation