Skip to main content
Log in

Multi-Gaussian Stratified Modeling and Characterization of Multi-process Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Surface serves as the fingerprint of a component. Most researchers understood surface topography from a single-stratum viewpoint, some ones have focused on a bi-Gaussian stratified model that respects formation mechanism, but few studies have considered a multi-Gaussian stratified possibility. A multi-Gaussian stratified model of surface topography is developed based on the existing bi-Gaussian stratified surface theory. The bi-Gaussian characterizing method, on the basis of linear regression, is revised to differentiate the mixed multiple Gaussian components. The model and the method are demonstrated on simulated multi-Gaussian stratified surfaces and real engineering surfaces manufactured by turning, rough lapping, and fine lapping. The results reveal the existence of multi-Gaussian stratified feature on multi-process surfaces in industry, and improve the stratified surface theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Whitehouse, D.J.: Surfaces—a link between manufacture and function. Proc. IMechE. 192, 179–188 (1978)

    Article  Google Scholar 

  2. Lawrence, K.D., Ramamoorthy, B.: Multi-Surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines. Appl. Surf. Sci. 365, 19–30 (2016)

    Article  Google Scholar 

  3. Kumar, R., Kumar, S., Prakash, B., et al.: Assessment of engine liner wear from bearing area curves. Wear 239, 282–286 (2000)

    Article  Google Scholar 

  4. Touche, T., Cayer-Barrioz, J., Mazuyer, D.: Friction of textured surfaces in EHL and mixed lubrication: effect of the groove topography. Tribol. Lett. 63(2), 1–14 (2016)

    Article  Google Scholar 

  5. Liewald, M., Wagner, S., Becker, D.: Influence of surface topography on the tribological behaviour of aluminium alloy 5182 with EDT surface. Tribol. Lett. 39(2), 135–142 (2010)

    Article  Google Scholar 

  6. Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Stratified revised asperity contact model for worn surfaces. J. Tribol. 139, 021403 (2017)

    Article  Google Scholar 

  7. Lou, S., Jiang, X., Bills, P.J., Scott, P.J.: Defining true tribological contact through application of the morphological method to surface topography. Tribol. Lett. 50(2), 185–193 (2013)

    Article  Google Scholar 

  8. Whitehouse, D.J.: Assessment of surface finish profiles produced by multi-process manufacture. Proc. IMechE. B. 199, 263–270 (1985)

    Article  Google Scholar 

  9. Malburg, M.C., Raja, J., Whitehouse, D.J.: Characterization of surface texture generated by plateau honing process. CIRP Ann. 42, 637–639 (1993)

    Article  Google Scholar 

  10. Sannareddy, H., Raja, J., Chen, K.: Characterization of surface texture generated by multi-process manufacture. Int. J. Mach. Tools Manufact. 38, 529–536 (1998)

    Article  Google Scholar 

  11. Leefe, S.E.: “Bi-Gaussian” representation of worn surface topography in elastic contact problems. Tribol. Ser. 34, 281–290 (1998)

    Article  Google Scholar 

  12. Pawlus, P., Grabon, W.: The method of truncation parameters measurement from material ratio curve. Precis. Eng. 32, 342–347 (2008)

    Article  Google Scholar 

  13. Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Continuous separating method for characterizing and reconstructing bi-Gaussian stratified surfaces. Tribol. Int. 102, 454–462 (2016)

    Article  Google Scholar 

  14. Hu, S., Huang, W., Brunetiere, N., Liu, X., Wang, Y.: Truncated separation method for characterizing and reconstructing bi-Gaussian stratified surfaces. Friction 5(1), 32–44 (2017)

    Article  Google Scholar 

  15. Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Bi-Gaussian surface identification and reconstruction with revised autocorrelation functions. Tribol. Int. 110, 185–194 (2017)

    Article  Google Scholar 

  16. Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Evolution of bi-Gaussian surface parameters of silicon-carbide and carbon-graphite discs in a dry sliding wear process. Tribol. Int. 112, 75–85 (2017)

    Article  Google Scholar 

  17. Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: The bi-Gaussian theory to understand sliding wear and friction. Tribol. Int. 114, 186–191 (2017)

    Article  Google Scholar 

  18. Williamson, J.P.B.: Microtopography of surfaces. Proc. IMechE. 182, 21–30 (1967)

    Article  Google Scholar 

  19. ISO 13565-3: Surface Texture: Profile Method; Surfaces having stratified functional properties—Part 3: Height characterization using the material probability curve. ISO, Geneva (1998)

    Google Scholar 

  20. Grabon, W., Pawlus, P., Sep, J.: Tribological characteristics of one-process and two-process cylinder liner honed surfaces under reciprocating sliding conditions. Tribol. Int. 43, 1882–1892 (2010)

    Article  Google Scholar 

  21. Pawlus, P., Michalczewski, R., Lenart, A., Dzierwa, A.: The effect of random surface topography height on fretting in dry gross slip conditions. Proc. IMechE. J. 228, 1374–1391 (2014)

    Article  Google Scholar 

  22. Dzierwa, A., Pawlus, P., Zelasko, W.: Comparison of tribological behaviors of one-process and two-process steel surfaces in ball-on-disc tests. Proc. IMechE J. 228, 1195–1210 (2014)

    Article  Google Scholar 

  23. Grabon, W., Pawlus, P., Wos, S., Koszela, W., Wieczorowski, M.: Effects of honed cylinder liner surface texture on tribological properties of piston ring-liner assembly in short time tests. Tribol. Int. 113, 137–148 (2017)

    Article  Google Scholar 

  24. Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Stratified effect of continuous bi-Gaussian rough surface on lubrication and asperity contact. Tribol. Int. 104, 328–341 (2016)

    Article  Google Scholar 

  25. Zelasko, W., Pawlus, P., Dzierwa, A., Prucnal, S.: Experimental investigation of plastic contact between a rough steel surface and a flat sintered carbide surface. Tribol. Int. 100, 141–151 (2016)

    Article  Google Scholar 

  26. Pawlus, P., Zelasko, W., Reizer, R., Wieczorowski, M.: Calculation of plasticity index of two-process surfaces. Proc. IMechE J. 231, 572–582 (2017)

    Article  Google Scholar 

  27. Hu, S., Huang, W., Shi, X., Peng, Z., Liu, X., Wang, Y.: Bi-Gaussian stratified effect of rough surfaces on acoustic emission under a dry sliding friction. Tribol. Int. 119, 308–315 (2018)

    Article  Google Scholar 

  28. Pawlus, P.: Simulation of stratified surface topographies. Wear 264, 457–463 (2008)

    Article  Google Scholar 

  29. Podsiadlo, P., Wolski, M., Stachowiak, G.W.: Fractal analysis of surface topography by the directional blanket covering method. Tribol. Lett. 59(3), 41 (2015)

    Article  Google Scholar 

  30. Lawrence, K.D., Ramamoorthy, B.: Surface topography characterization of automotive cylinder liner surfaces using fractal methods. Appl. Surf. Sci. 280, 332–342 (2013)

    Article  Google Scholar 

  31. Patir, N.: A numerical procedure for random generation of rough surfaces. Wear 47, 263–277 (1978)

    Article  Google Scholar 

  32. Bakolas, V.: Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces. Wear 254, 46–554 (2004)

    Google Scholar 

  33. Hu, Y., Tonder, K.: Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. Int. J. Mach. Tools Manufact. 32, 83–90 (1992)

    Article  Google Scholar 

  34. Wu, J.: Simulation of rough surfaces with FFT. Tribol. Int. 33, 47–58 (2000)

    Article  Google Scholar 

  35. Wu, J.: Simulation of non-Gaussian surfaces with FFT. Tribol. Int. 37, 339–346 (2004)

    Article  Google Scholar 

  36. Corral, I.B., Calvet, J.V., Salcedo, M.C.: Use of roughness probability parameters to quantify the material removed in plateau-honing. Int. J. Mach. Tools Manufact. 50, 621–629 (2010)

    Article  Google Scholar 

  37. Hu, S., Huang, W., Liu, X., Wang, Y.: Probe model of wear degree under sliding wear by Rk parameter set. Tribol. Int. 109, 578–585 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (Grant No. 2017M621458), the National Natural Science Foundation of China (Grant No. 11572192), the National Natural Science Foundation of China (Grant No. 11632011), and the National Science and Technology Support Plan Project (Grant No. 2015BAA08B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Huang, W., Shi, X. et al. Multi-Gaussian Stratified Modeling and Characterization of Multi-process Surfaces. Tribol Lett 66, 117 (2018). https://doi.org/10.1007/s11249-018-1071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1071-5

Keywords

Navigation