Skip to main content
Log in

The Growth of Interfacial IMC Layer in SAC0307 Solder Joints with Specific Grain Orientation Under Electrical and Thermal Coupling Fields

  • TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We reported the reliability of Sn0.3Ag0.7Cu (SAC0307) solder joints under electrical and thermal coupling fields, where the c-axes of Sn grains were all nearly parallel to the direction of current and thermal flows. In these studies, individual electromigration (EM), individual thermomigration (TM), and thermoelectric coupling migration behaviors were investigated by applying a current density of 104 A/cm2, and a temperature gradient of 103°C/cm at Cu/SAC0307/Cu solder joints, respectively. The SEM and EBSD were utilized to characterize the morphologies and crystal orientations of each solder joint. The results indicated that the Cu atoms tended to migrate to the anode side under EM. The thickness of an interfacial intermetallic (IMC) layer at the anode increased 3.93 μm. In addition, the Cu atoms diffused toward the lower temperature side under TM, and the thickness of the IMC layer at cold side increased 1.72 μm. When the solder joints were experiencing the coupling fields with the same directions of current and thermal flows, the thickness of IMC layer at anode side (cold side) could increase up to 7.67 μm. The results showed that the effect of thermal flow could assist to accumulate the IMC at the anode side, and accelerate the migration of Cu atoms. This research could help to further understand the reliability behaviors of SAC0307 solders under the service environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ohba, ECS Trans. 34, 1011 (2011).

    Article  CAS  Google Scholar 

  2. R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay and P. Soussan, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). June, vol. 858 (2010).

  3. D.Q. Yu, J. Zhao, and L. Wang, J. Alloy. Compd. 376, 170 (2004).

    Article  CAS  Google Scholar 

  4. H. Ye, C. Basaran, and D.C. Hopkins, Appl. Phys. Lett. 82, 1045–1047 (2003).

    Article  CAS  Google Scholar 

  5. X. Gu, K.C. Yung, and Y.C. Chan, J. Mater. Sci. Mater. Electron. 21, 1090 (2010).

    Article  CAS  Google Scholar 

  6. Y. Tian, J. Han, and F. Guo, J. Mater. Sci.-Mater. Electron. 28, 10785 (2017).

    Article  CAS  Google Scholar 

  7. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  CAS  Google Scholar 

  8. F.-Y. Ouyang, K.N. Tu, Y.-S. Lai, and A.M. Gusak, J. Appl. Phys. Lett. 89, 221906 (2006).

    Article  Google Scholar 

  9. Y. Wang, J. Han, L.M. Ma, Y. Zuo, and F. Guo, J. Electron. Mater. 45, 6095 (2016).

    Article  CAS  Google Scholar 

  10. G. Gurp, P. Waard, and F. Chatenier, J. Appl. Phys. 58, 728 (1985).

    Article  Google Scholar 

  11. G. Gurp, P. Waard, and F. Chatenier, J. Appl. Phys. Lett. 45, 1054 (1984).

    Article  Google Scholar 

  12. E. Stracke and C. Herzig, Phys. Status Solidi (A) 66, 189 (1981).

    Article  CAS  Google Scholar 

  13. T.Y. Tan, J. Appl. Phys. Lett. 73, 2678 (1998).

    Article  CAS  Google Scholar 

  14. P. Rimbey and R. Sorbello, Phys. Rev. B Condens. Matter. 38, 1095 (1988).

    Article  CAS  Google Scholar 

  15. W.L. Schaich, Phys. Rev. B. 13, 3350 (1976).

    Article  Google Scholar 

  16. A.M. Stoneham and C.P. Flynn, J. Phys. F Metal Phys. 3, 505 (1973).

    Article  CAS  Google Scholar 

  17. R.A. Johns and D.A. Blackburn, Thin Solid Films 25, 291 (1975).

    Article  CAS  Google Scholar 

  18. C.Q. Ru, J. Mater. Sci. 35, 5575 (2000).

  19. W. Jones, J. Phys. C Solid State Phys. 14, 5505 (1981).

    Article  CAS  Google Scholar 

  20. M.J. Gillan, J. Phys. C Solid State Phys. 17, L237 (1984).

    Article  Google Scholar 

  21. M. Hamid and C. Basaran. 2008 33rd IEEE/CPMT IEMT. (2008).

  22. D. Feng, F. Wang, D. Li, B. Wu, and L. Liu, Mater. Res. Express. 6, 4 (2018).

    Google Scholar 

  23. F. Wang, H. Chen, D. Li, Z. Zhang, and X. Wang, Electron. Mater. Lett. 15, 1 (2018).

    Google Scholar 

  24. T. Tian, K.N. Tu, H.Y. Chen, H.Y. Hsiao, and C. Chen, Annu. Rev. Mater. Res. 40, 423 (2012).

    Google Scholar 

  25. A.T. Huang, K.N. Tu, and Y.-S. Lai, J. Appl. Phys. 100, 033512 (2006).

    Article  Google Scholar 

  26. Y. Zuo, L.M. Ma, F. Guo, L. Qiao, Y.T. Shu, A. Lee, and K.N. Subramanian, J. Electron. Mater. 43, 4395 (2014).

    Article  CAS  Google Scholar 

  27. Y. Tian, J. Han, L.M. Ma, and F. Guo, Microelectron. Reliab. 80, 7 (2018).

    Article  CAS  Google Scholar 

  28. F. Guo, Q. Liu, L. Ma, and Y. Zuo, J. Mater. Res. 1, 1 (2016).

    Google Scholar 

  29. D. Yang, B.Y. Wu, Y.C. Chan, and K.N. Tu, J. Appl. Phys. 102, 043502 (2007).

    Article  Google Scholar 

  30. C.M. Chen, L.T. Chen, and Y.S. Lin, J. Electron. Mater. 36, 168 (2007).

    Article  CAS  Google Scholar 

  31. X. Gu, D. Yang, Y.C. Chan, and B.Y. Wu, J. Mater. Res. 23, 2591 (2011).

    Article  Google Scholar 

  32. Z. Sun, L. Ma, Y. Wang, J. Han, Y. Zuo and F. Guo, 2017 18th International Conference on Electronic Packaging Technology (ICEPT). 750 (2017).

  33. Y. Li, F.S. Wu, and Y.C. Chan, J. Mater. Sci.-Mater. Electro. 26, 8522 (2015).

    Article  CAS  Google Scholar 

  34. H.-Y. Hsiao and C. Chen, J Appl Phys Lett. 90, 249902 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of this study from the joint specialized research fund for the Beijing Natural Science Foundation (2162006 and 2170009), Beijing Young top notch talent support program (CIT&TCD201804007), and National Natural Science Foundation of China [Grant Numbers 51425101 and 51621003].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Ma, L., Wang, Y. et al. The Growth of Interfacial IMC Layer in SAC0307 Solder Joints with Specific Grain Orientation Under Electrical and Thermal Coupling Fields. J. Electron. Mater. 49, 202–211 (2020). https://doi.org/10.1007/s11664-019-07669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07669-7

Keywords

Navigation