Skip to main content
Log in

Effect of Sb Additions on the Creep Behaviour of Bi Containing SAC Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Creep behaviour as well as microstructural evolution resulting from long-term isothermal treatment of cast Sn-3Ag-3Bi-0.5Cu-(0.6–5)Sb solder alloys for electronic packaging applications are investigated. Mechanisms of deformation are evaluated via creep tests conducted at a temperature range of 25–150°C using 7.5–12.5 MPa stress and in-depth scanning electron microscopy analysis. Short primary creep stages (< 1 h), an indication of low work hardening, followed by the secondary creep stage occurred in all conditions. Dislocation processes were found to control creep deformation above 100°C. Increase in Sb content has negligible effect on minimum creep rates but does affect the duration of secondary creep stage. A change in activation energy of creep deformation is determined at temperatures below 100°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.T. Lee, H.S. Lin, C.S. Lee, and P.W. Chen, Mater. Sci. Eng. A 407, 36 (2005).

    Article  Google Scholar 

  2. M. Hasnine, B. Tolla, and N. Vahora, J. Electron. Mater. 47, 2488 (2018).

    Article  Google Scholar 

  3. P. Sungkhaphaitoon and T. Plookphol, Metall. Mater. Trans. A 49, 652 (2018).

    Article  Google Scholar 

  4. R.J. McCabe and M.E. Fine, Metall. Mater. Trans. A 33, 1531 (2002).

    Article  Google Scholar 

  5. J.H. Kim, S.W. Jeong, and H.M. Lee, Mater. Trans. 43, 1873 (2002).

    Article  Google Scholar 

  6. A.E. Hammad, Microelectron. Reliab. 87, 133 (2018).

    Article  Google Scholar 

  7. B.L. Chen and G.Y. Li, Thin Solid Films 462–463, 395 (2004).

    Article  Google Scholar 

  8. K. Kanlayasiri and R. Kongchayasukawat, Trans. Nonferrous Met. Soc. 28, 1166 (2018).

    Article  Google Scholar 

  9. A.A. El-Daly, Y. Swilem, and A.E. Hammad, J. Alloys Compd. 471, 98 (2009).

    Article  Google Scholar 

  10. A.R. Geranmayeh and R. Mahmudi, J. Mater. Sci. 40, 3361 (2005).

    Article  Google Scholar 

  11. A.A. El-Daly, A. Fawzy, A.Z. Mohamad, and A.M. Al-Taher, J. Alloys Compd. 509, 4574 (2011).

    Article  Google Scholar 

  12. D.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, J. Electron. Mater. 41, 2631 (2012).

    Article  Google Scholar 

  13. A.H. Nobari, M. Maalekian, K. Seelig, and M. Pekguleryuz, Solder. Surf. Mt. Technol. 28, 93 (2016).

    Article  Google Scholar 

  14. A.H. Nobari, M. Maalekian, K. Seelig, and M. Pekguleryuz, J. Electron. Mater. 46, 4076 (2017).

    Article  Google Scholar 

  15. M. Maalekian, Y. Xu, and K. Seelig, in Surface Mount Technology Association (SMTA) International (2015) pp. 191–198.

  16. M. Celikin, M. Maalekian, and M. Pekguleryuz, J. Electron. Mater. 47, 5842 (2018).

    Article  Google Scholar 

  17. A.A. El-Daly, A.E. Hammada, A. Fawzy, and D.A. Nasrallh, Mater. Des. 43, 40 (2013).

    Article  Google Scholar 

  18. K.Y. Cheong, M.C. Ng, A.B. Ismail, and L.B. Hussain, in Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium. 2008 https://doi.org/10.1109/iemt.2008.5507895.

  19. A.A. El-Daly, A.Z. Mohamad, A. Fawzy, and A.M. El-Taher, Mater. Sci. Eng. A 528, 1055 (2011).

    Article  Google Scholar 

  20. R. Mahmudi, A.R. Geranmayeh, M. Allami, and M. Bakherad, J. Electron. Mater. 36, 1703 (2007).

    Article  Google Scholar 

  21. R.J. McCabe and M.E. Fine, Metall. Mater. Trans. A 33A, 575 (2002).

    Article  Google Scholar 

  22. M. Celikin and M. Pekguleryuz, Mater. Sci. Eng. A 556, 911 (2012).

    Article  Google Scholar 

  23. M. Pekguleryuz and M. Celikin, Inter. Mater. Rev. 55, 197 (2010).

    Article  Google Scholar 

  24. R.W. Evans and B. Wilshire, Introduction to Creep (London: The Institute of Materials, 1993).

    Google Scholar 

  25. K.R. Athul, U.T.S. Pillai, A. Srinivasan, and B.C. Pai, Adv. Eng. Mater. 18, 770 (2016).

    Article  Google Scholar 

  26. C. Coston and N.H. Nachtrieb, J. Phys. Chem. 68, 2219 (1964).

    Article  Google Scholar 

  27. J.D. Meakin and E. Klokholm, Trans. Met. Soc. AIME 218, 463 (1960).

    Google Scholar 

  28. F. Yang and J.C.M. Li, J. Mater. Sci. 18, 191 (2007).

    Google Scholar 

  29. F. Lang, H. Tanaka, O. Munegata, T. Taguchi, and T. Narita, Mater. Charact. 54, 223 (2005).

    Article  Google Scholar 

  30. K.E. Puttick and R. King, J. Inst. Met. 80, 537 (1952).

    Google Scholar 

  31. H. Shang, Z.L. Ma, S.A. Belyakov, and C.M. Gourlay, J. Alloys Compd. 715, 471 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This project was conducted under MITACs Accelerate Project Grant G244961 MITACS IT08496. The authors thank Dr. Amir Farkoosh and Luis Angel Villegas Armenta for conducting the FactSage calculations, and Mr. Yuan Xu for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Celikin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celikin, M., Maalekian, M. & Pekguleryuz, M. Effect of Sb Additions on the Creep Behaviour of Bi Containing SAC Alloys. J. Electron. Mater. 48, 5562–5569 (2019). https://doi.org/10.1007/s11664-019-07410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07410-4

Keywords

Navigation