Skip to main content
Log in

Effect of Homogenization on the Indentation Creep of Cast Lead-Free Sn-5%Sb Solder Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Creep behavior of cast lead-free Sn-5%Sb solder in unhomogenized and homogenized conditions was investigated by long time Vickers indentation testing under a constant load of 15 N and at temperatures in the range 321–405 K. Based on the steady-state power law creep relationship, the stress exponents were found for both conditions of the material. The creep behavior in the unhomogenized condition can be divided into two stress regimes, with a change from the low-stress regime to the high-stress regime occurring around 11.7 × 10−4 < (H V /E) < 18 × 10−4. The low stress regime activation energy of 54.2 kJ mol−1, which is close to 61.2 kJ mol−1 for dislocation pipe diffusion in the Sn, and stress exponents in the range 5.0–3.5 suggest that the operative creep mechanism is dislocation viscous glide. This behavior is in contrast to the high stress regime in which the average values of n = 11.5 and Q = 112.1 kJ mol−1 imply that dislocation creep is the dominant deformation mechanism. Homogenization of the cast material resulted in a rather coarse recrystallized microstructure with stress exponents in the range 12.5–5.7 and activation energy of 64.0 kJ mol−1 over the whole ranges of temperature and stress studied, which are indicative of a dislocation creep mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D.G. Kim and S.B. Jung, J. Alloys Compd. 386, 151 (2005).

    Article  CAS  Google Scholar 

  2. R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, and W. Jillek, J. Alloys Compd. 392, 149 (2005).

    Article  CAS  Google Scholar 

  3. F. Ochoa, X. Deng, and N. Chawala, J. Electron. Mater. 33, 1596 (2004).

    Article  CAS  Google Scholar 

  4. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. A 36A, 99 (2005).

    Article  CAS  Google Scholar 

  5. N. Wade, K. Wu, J. Kunii, S. Yamada, and K. Miyahara, J. Electron. Mater. 30, 1228 (2001).

    Article  CAS  Google Scholar 

  6. K.L. Murty, F.M. Haggag, and R.K. Mahidhara, J. Electron. Mater. 26, 839 (1997).

    Article  CAS  Google Scholar 

  7. P.T. Vianco and D.R. Frear, JOM 45(7), 14 (1993).

    CAS  Google Scholar 

  8. D. Mitlin, C.H. Raeder, and R.W. Messler, Metall. Mater. Trans. A 30A, 115 (1999).

    Article  CAS  Google Scholar 

  9. H. Mavoori, JOM 52(6), 29 (2000).

    Article  Google Scholar 

  10. R.J. McCabe and M.E. Fine, Metall. Mater. Trans. A 33A, 1531 (2002).

    Article  CAS  Google Scholar 

  11. A. de La Torre, P. Adeva, and M. Aballe, J. Mater. Sci. 26, 4351 (1991).

    Article  Google Scholar 

  12. B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30A, 601 (1999).

    Article  CAS  Google Scholar 

  13. M. Fujiwara and M. Otsuka, Mater. Sci. Eng., A A319-321, 929 (2001).

    Google Scholar 

  14. F. Yang and J.C.M. Li, Mater. Sci. Eng., A A201, 40 (1995).

    CAS  Google Scholar 

  15. A. Juhasz, P. Tasnadi, and I. Kovacs, J. Mater. Sci. Lett. 5, 35 (1986).

    Article  CAS  Google Scholar 

  16. I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng., A A379, 401 (2004).

    CAS  Google Scholar 

  17. R. Mahmudi and A. Rezaee-Bazzaz, Mater. Lett. 59, 1705 (2005).

    Article  CAS  Google Scholar 

  18. T.T. Fang, R.R. Cola, and K.L. Murty, Metall. Trans. A 17A, 1447 (1986).

    CAS  Google Scholar 

  19. R. Roumina, B. Raeisinia, and R. Mahmudi, Scripta Mater. 51, 497 (2004).

    Article  CAS  Google Scholar 

  20. R. Mahmudi, R. Roumina, and B. Raeisinia, Mater. Sci. Eng., A A382, 15 (2004).

    CAS  Google Scholar 

  21. A.R. Geranmayeh and R. Mahmudi, J. Electron. Mater. 34, 1002 (2005).

    Article  CAS  Google Scholar 

  22. A.R. Geranmayeh and R. Mahmudi, J. Mater. Sci. 40, 3361 (2005).

    Article  CAS  Google Scholar 

  23. R. Mahmudi, A.R. Geranmayeh, and A. Rezaee-Bazzaz, Mater. Sci. Eng., A A448, 287 (2007).

    CAS  Google Scholar 

  24. P.M. Sargent andM.F. Ashby, Mater. Sci. Technol. 8, 594 (1992).

    CAS  Google Scholar 

  25. L. Rotherham, A.D.N. Smith, and G.B. Greenough, J. Inst. Met. 79, 439 (1951).

    CAS  Google Scholar 

  26. T.G. Langdon, Strength of Metals and Alloys. Proc. 6th Int. Conf., August 1982, ICSMA 6, ed. R.C. Gifkins (Pergamon Press, NY, 1982), p. 1105.

  27. T. Reinikainen and J. Kivilahti, Metall. Mater. Trans. A 30A, 123 (1999).

    Article  CAS  Google Scholar 

  28. J.D. Meakin and E. Klokholm, Trans. TMS-AIME, 218, 463 (1960).

    CAS  Google Scholar 

  29. B. Walser and O.D. Sherby, Scripta Matell. 16, 213 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmudi, R., Geranmayeh, A., Allami, M. et al. Effect of Homogenization on the Indentation Creep of Cast Lead-Free Sn-5%Sb Solder Alloy. J. Electron. Mater. 36, 1703–1710 (2007). https://doi.org/10.1007/s11664-007-0275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0275-5

Key words

Navigation