Skip to main content
Log in

Simple Design of a Copolarization Wideband Metamaterial Absorber for C-Band Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A simple design for a copolarization wideband metamaterial absorber (MA) for C-band applications is proposed. The unit cell of the proposed MA is designed by combining half-moon-shaped resonator and interior circle resonator structures, on flame retardant 4 substrate. The absorption performance of the proposed absorber is investigated using Computer Simulation Technology Microwave Studio simulations. The MA design parameters are optimized based on analysis of the equivalent circuit model. The designed absorber achieves copolarization absorptivity above 90% across the entire C-band from 3.95 GHz to 8.02 GHz under normal incidence for transverse electric (TE) and transverse magnetic (TM) polarizations. Moreover, the average absorption remains above 80% even for angles of incidence up to 60° under both TE and TM polarizations. The physical mechanism of the MA is investigated by using the electric and surface current distributions, which is also supported by the retrieved constitutive electromagnetic parameters. The designed structure is compact (unit cell dimension of ∼ λ/6.5 and thickness of ∼ λ/11.8 at the center frequency), broadband, and insensitive to the angle of incidence across a wide range, enabling applications in C-band defense and stealth systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.B.P. Niesler, J.K. Gansel, S. Fischbach, and M. Wegener, Appl. Phys. Lett. 100, 203508 (2012).

    Article  Google Scholar 

  2. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, Nanoscale Res. Lett. 12, 1 (2017).

    Article  Google Scholar 

  3. K.V. Sreekanth, Y. Alapan, M. Elkabbash, E. llker, H. Hinczewski, U.A. Gurkan, A. De Luca, and G. Strangi, Nat. Mater. 15, 621 (2016).

    Article  Google Scholar 

  4. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, Nano Lett. 12, 440 (2012).

    Article  Google Scholar 

  5. H.A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).

    Article  Google Scholar 

  6. L.W. Li, Y.N. Li, T.S. Yeo, J.R. Mosig, and O.J.F. Martin, Appl. Phys. Lett. 96, 164101 (2010).

    Article  Google Scholar 

  7. J. Zhu and G.V. Eleftheriades, IEEE Antennas Wirel. Propag. Lett. 8, 295 (2009).

    Article  Google Scholar 

  8. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, Appl. Phys. Lett. 98, 254101 (2011).

    Article  Google Scholar 

  9. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  10. N.T. Hien, B.S. Tung, N.T. Tuan, N.T. Tung, Y. Lee, N.M. An, and V.D. Lam, Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 025013 (2014).

    Article  Google Scholar 

  11. D.T. Viet, N.T. Hien, P.V. Tuong, N.Q. Minh, P.T. Trang, L.N. Le, Y.P. Lee, and V.D. Lam, Opt. Commun. 322, 209 (2014).

    Article  Google Scholar 

  12. H. Wang and L. Wang, Opt. Express 21, A1078 (2013).

    Article  Google Scholar 

  13. T.M. Cuong, N.T. Thuy, and L.A. Tuan, J. Electron. Mater. 45, 2591 (2016).

    Article  Google Scholar 

  14. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, Appl. Phys. Lett. 100, 103506 (2012).

    Article  Google Scholar 

  15. Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N.X. Fang, Nano Lett. 12, 1443 (2012).

    Article  Google Scholar 

  16. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, and L. Henrard, Opt. Express 22, 12678 (2014).

    Article  Google Scholar 

  17. K.T. Lee, C. Ji, and L.J. Guo, Appl. Phys. Lett. 108, 3 (2016).

    Google Scholar 

  18. N.T.Q. Hoa, P.H. Lam, and P.D. Tung, Microw. Opt. Technol. Lett. 59, 1157 (2017).

    Article  Google Scholar 

  19. N.T.Q. Hoa, P.D. Tung, P.H. Lam, N.D. Dung, and N.H. Quang, J. Electron. Mater. 47, 2634 (2018).

    Article  Google Scholar 

  20. H. Xiong, J.S. Hong, C.M. Luo, and L.L. Zhong, J. Appl. Phys. 114, 064109 (2013).

    Article  Google Scholar 

  21. J. Ma, W. Tong, K. Shi, X. Cao, and B. Gong, Prog. Electromagn. Res. Lett. 49, 73 (2014).

    Article  Google Scholar 

  22. A. Noor and Z. Hu, IET Microwaves Antennas Propag. 4, 667 (2010).

    Article  Google Scholar 

  23. Y. Shang, Z. Shen, and S. Xiao, IEEE Trans Antennas Propag. 61, 6022 (2013).

    Article  Google Scholar 

  24. S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, and D. Zhang, J. Appl. Phys. 116, 043710 (2014).

    Article  Google Scholar 

  25. D. Kundu, A. Mohan, and A. Chakrabarty, IEEE Antennas Wirel. Propag. Lett. 15, 1589 (2016).

    Article  Google Scholar 

  26. X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, IEEE Photonics J. 9, 4600213 (2018).

    Google Scholar 

  27. D. Marathe and K. Kulat, Prog. Electromagn. Res. Mater. 65, 129 (2018).

    Article  Google Scholar 

  28. J. Xu, R. Li, S. Wang, and T. Han, Opt. Express 26, 26235 (2018).

    Article  Google Scholar 

  29. T. Beeharry, R. Yahiaoui, K. Selemani, and H.H. Ouslimani, Materials 11, 1668 (2018).

    Article  Google Scholar 

  30. T. Beeharry, R. Yahiaoui, K. Selemani, and H.H. Ouslimani, Sci. Rep. 8, 382 (2018).

    Article  Google Scholar 

  31. G. Sen, M. Kumar, S.N. Islam, and S. Das, Waves Random Complex Media 29, 153 (2019).

    Article  Google Scholar 

  32. S. Bhattacharyya, Mapan J. Metrol. Soc. India 31, 299 (2016).

    Google Scholar 

  33. D. Sood, C.C. Tripathi, and J. Microwaves, Optoelectron. Electromagn. Appl. 16, 514 (2017).

    Article  Google Scholar 

  34. S. Ghosh, S. Bhattacharyya, D. Chaurasiya, and K.V. Srivastava, IEEE Antennas Wirel. Propag. Lett. 14, 1172 (2015).

    Article  Google Scholar 

  35. Y. Shen, J. Zhang, Y. Pang, L. Zheng, J. Wang, H. Ma, and S. Qu, Sci. Rep. 8, 4423 (2018).

    Article  Google Scholar 

  36. Q. Chen, S. Bie, W. Yuan, Y. Xu, H. Xu, and J. Jiang, J. Phys. D Appl. Phys. 49, 425102 (2016).

    Article  Google Scholar 

  37. N.T.Q. Hoa, T.S. Tuan, L.T. Hieu, and B.L. Giang, Sci. Rep. 9, 468 (2019).

    Article  Google Scholar 

  38. X.F. Zang, C. Shi, L. Chen, B. Cai, Y.M. Zhu, and S.L. Zhuang, Sci. Rep. 5, 8901 (2015).

    Article  Google Scholar 

  39. M.C. Tran, D.H. Le, V.H. Pham, H.T. Do, D.T. Le, H.L. Dang, and V.D. Lam, Sci. Rep. 8, 9523 (2018).

    Article  Google Scholar 

  40. W. Xin, Z. Binzhen, W. Wanjun, W. Junlin, and D. Junping, IEEE Photonics J. 9, 4600213 (2017).

    Google Scholar 

  41. J. Ren and J.Y. Yin, Opt. Mater. Express 8, 2060 (2018).

    Article  Google Scholar 

  42. D.K. Cheng, Field and Wave Electromagnetics, 2nd ed. (India: Pearson, 2011).

    Google Scholar 

  43. T.T. Nguyen and S. Lim, Appl. Phys. Lett. 112, 021605 (2018).

    Article  Google Scholar 

  44. N. Van Dung, B.S. Tung, B.X. Khuyen, Y.J. Yoo, Y.J. Kim, J.Y. Rhee, V.D. Lam, and Y. Lee, J. Phys. D Appl. Phys. 48, 375103 (2015).

    Article  Google Scholar 

  45. N.T.Q. Hoa, P.H. Lam, P.D. Tung, T.S. Tuan, and H. Nguyen, IEEE Photonics J. 11, 4600208 (2019).

    Article  Google Scholar 

  46. S. Bhattacharyya and K. Vaibhav Srivastava, J. Appl. Phys. 115, 064508 (2014).

    Article  Google Scholar 

  47. C.L. Holloway, E.F. Kuester, and A. Dienstfrey, IEEE Antennas Wirel. Propag. Lett. 10, 1507 (2011).

    Article  Google Scholar 

  48. P.V. Tuong, J.W. Park, J.Y. Rhee, K.W. Kim, H. Cheong, W.H. Jang, and Y.P. Lee, Mater. Chem. Phys. 141, 535 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2017.367.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Quynh Hoa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, T.S., Lam, V.D. & Hoa, N.T.Q. Simple Design of a Copolarization Wideband Metamaterial Absorber for C-Band Applications. J. Electron. Mater. 48, 5018–5027 (2019). https://doi.org/10.1007/s11664-019-07301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07301-8

Keywords

Navigation