Skip to main content
Log in

High-Voltage Lateral Double-Diffused Metal-Oxide Semiconductor with Double Superjunction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A high-voltage lateral double-diffused metal-oxide semiconductor with double superjunction (DSJ LDMOS) is proposed in this paper. A vertical SJ under the drain and a lateral SJ in the drift region are introduced to form a double SJ in the DSJ LDMOS. To suppress the substrate-assisted depletion effect of the lateral SJ, a charge compensation layer linearly doped from source to drain is adopted in the drift region. In off-state, the vertical SJ enhances the depletion of the substrate to improve the vertical breakdown voltage (BV) and modulates the lateral electric field to increase the lateral BV. The lateral SJ increases the lateral BV and modulates the vertical electric field to improve the vertical BV. The vertical SJ is composed of N and P pillars with different concentrations. In on-state, the lateral SJ also provides a low-resistance channel, which decreases the specific on-resistance (Ron,sp). Simulation results indicate that the BV, figure of merit (FOM), and Ron,sp of the DSJ LDMOS are 1138 V, 10.5 MW cm−2, and 103.4 mΩ cm2, respectively. The BV and FOM of the DSJ LDMOS are increased by 31.3% and 483% compared with the conventional vertical SJ LDMOS (Con. VSJ LDMOS), while the Ron,sp of the DSJ LDMOS is reduced by 70%. The “silicon limit” is thus broken by the DSJ LDMOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Marzoughi, R. Burgos, and D. Boroyevich, IEEE Trans. Ind. Electron., 66, 1 (2018).

  2. C.M. Hu, IEEE Trans. Electron Dev. 26, 243 (1979).

    Article  Google Scholar 

  3. J. Deng, J. Cheng, and X.B. Chen, IEEE Electron Device Lett. 38, 1712 (2017).

    Article  Google Scholar 

  4. L.J. Wu, Z.J. Zhang, Y. Song, H. Yang, L.M. Hu, and N. Yuan, Chin. Phys. B 26, 386 (2017).

    Google Scholar 

  5. W.T. Zhang, Z.Y. Zhan, S.K. Cheng, Y. Gu, S. Zhang, Y. Yu, X.R. Luo, Z.H. Li, M. Qiao, Z.J. Li, and B. Zhang, IEEE Electron Dev. Lett. 38, 1555 (2017).

    Article  Google Scholar 

  6. L.J. Wu, W.T. Zhang, M. Qiao, B. Zhang, and Z.J. Li, Electron. Lett. 48, 297 (2012).

    Google Scholar 

  7. Z.J. Wang, X.H. Cheng, D.W. He, C. Xia, D.W. Xu, Y.H. Yu, D. Zhang, Y.Y. Wang, Y.Q. Lv, D.W. Gong, and K. Shao, Microelectron. Eng. 91, 102 (2012).

    Article  Google Scholar 

  8. Z. Cao, B.X. Duan, T.T. Shi, Z.M. Dong, H.J. Guo, and Y.T. Yang, IEEE Trans. Electron Dev. 65, 2565 (2018).

    Article  Google Scholar 

  9. X.R. Luo, Y.H. Jiang, K. Zhou, P. Wang, X.W. Wang, Q. Wang, G.L. Yao, B. Zhang, and Z.J. Li, IEEE Electron Dev. Lett. 33, 1042 (2012).

    Article  Google Scholar 

  10. S. Yuan, B.X. Duan, H. Cai, Z. Cao, and Y. Yang, in Proceedings of IEEE ISPSD (2017), pp. 279–282.

  11. B. Zhang, W.T. Zhang, Z.H. Li, M. Qiao, and Z.J. Li, IEEE Trans. Electron Dev. 61, 525 (2014).

    Article  Google Scholar 

  12. L.J. Wu, H. Yang, Y.Q. Wu, B. Lei, N. Yuan, Y. Song, L.M. Hu, and Y.Y. Zhang, Superlattice Microst. 116, 262 (2018).

    Article  Google Scholar 

  13. L.J. Wu, Y.Y. Zhang, H. Yang, Y. Song, N. Yuan, B. Lei, L.M. Hu, and Y.Q. Wu, Superlattice Microst. 123, 226 (2018).

    Article  Google Scholar 

  14. Y. Onishi and Y. Hashimoto, Jpn. J. Appl. Phys. 54, 8 (2015).

    Google Scholar 

  15. Y. Wang, X.F. Meng, P.P. Tang, and S.F. Cui, IEEE Trans. Electron Dev. 63, 4352 (2016).

    Article  Google Scholar 

  16. S.G. Nassif-Khalil, L.Z. Hou, and C.A.T. Salama, IEEE Trans. Electron Dev. 51, 1185 (2004).

    Article  Google Scholar 

  17. Y. Wang, Y.J. Liu, Y.F. Wang, C.H. Yu, F. Cao, Y. Hu, and G.F. Wang, IEEE Trans. Electron Dev. 64, 3028 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wu, Y., Zhang, Y. et al. High-Voltage Lateral Double-Diffused Metal-Oxide Semiconductor with Double Superjunction. J. Electron. Mater. 48, 2456–2462 (2019). https://doi.org/10.1007/s11664-019-07030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07030-y

Keywords

Navigation