Skip to main content
Log in

A Lateral Double-Diffusion Metal Oxide Semiconductor Device with a Gradient Charge Compensation Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to better shield the substrate-assisted depletion (SAD) effect and improve the breakdown voltage of super-junction (SJ) devices, an SJ lateral double-diffusion metal oxide semiconductor device with a gradient charge compensation layer (gradient device) is proposed. The main feature of this structure is to introduce a gradient charge compensation layer between the SJ layer of a conventional device and the substrate. The depth of the gradient charge compensation layer increases gradually from the source to the drain. The charge distribution in the drift region is optimized by reducing the compensation charge on the side near the source and increasing the compensation charge on the side near the drain. Introduction of the layer improves shielding of the SAD effect, and the electric field on the surface of the structure is an approximately rectangular distribution, thus the breakdown voltage is improved. The simulation results show that the gradient device has 409-V breakdown voltage and a 9.5-MW cm−2 figure of merit with a drift region length of 21 μm. Compared with the conventional SJ structure (conventional device) with the same drift length, the breakdown voltage and figure of merit of the gradient device are increased by 57.3% and 137.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. B and C. X, IEEE Trans. Power Electron. 32, 551 (2016).

  2. X. Luo, M. Lv, C. Yin, J. Wei, K. Zhou, Z. Zhao, T. Sun, B. Zhang, and Z. Li, IEEE Trans. Electron Devices 63, 3804 (2016).

    Article  CAS  Google Scholar 

  3. H. C, IEEE Trans. Electron Devices. 26, 243 (1979).

  4. S. G. Nassif-Khalil and C. A. T. Salama, in Proceeding ISPSD (2002), pp. 81–84.

  5. S. Honarkhah, S. Nassif-Khalil, and C. A. T. Salama, in ESSDERC (2004), pp. 117–120.

  6. S.G. Nassif-Khalil and C.A.T. Salama, IEEE Trans. Electron Devices 50, 1385 (2003).

    Article  CAS  Google Scholar 

  7. B. Zhang, W. Wang, W. Chen, and Z. Li, IEEE Electron Device Lett. 30, 849 (2009).

    Article  CAS  Google Scholar 

  8. L.J. Wu, H. Yang, Y.Q. Wu, B. Lei, N. Yuan, Y. Song, L.M. Hu, and Y.Y. Zhang, Superlattices Microstruct. 116, 262 (2018).

    Article  CAS  Google Scholar 

  9. B. Duan, S. Yuan, Z. Cao, and Y. Yang, IEEE Electron Device Lett. 35, 1115 (2014).

    Article  Google Scholar 

  10. W. Chen, B. Zhang, and Z. Li, Electron. Lett. 42, 1314 (2006).

    Article  Google Scholar 

  11. B. Duan, Z. Cao, X. Yuan, S. Yuan, and Y. Yang, IEEE Electron Device Lett. 36, 47 (2015).

    Article  CAS  Google Scholar 

  12. W. Chen, B. Zhang, and Z. Li, Semicond. Sci. Technol. 22, 464 (2007).

    Article  CAS  Google Scholar 

  13. B. Duan, Z. Cao, S. Yuan, and Y. Yang, IEEE Electron Device Lett. 36, 1348 (2015).

    Article  CAS  Google Scholar 

  14. J. Cheng, B. Zhang, B. Duan, and Z. Li, Chin. Phys. Lett. 25, 262 (2008).

    Article  CAS  Google Scholar 

  15. B.X. Duan, Y.T. Yang, and B. Zhang, IEEE Electron Device Lett. 30, 305 (2009).

    Article  Google Scholar 

  16. L.J. Wu, H. Yang, Y.Y. Zhang, Y. Song, N. Yuan, B. Lei, and Y.Q. Wu, J. Electron. Mater. 47, 6929 (2018).

    Article  CAS  Google Scholar 

  17. L. Liang, H. Huang, and X. Chen, in IEEE International Conference on Electron Devices & Solid-state Circuits (2016), pp. 120–123.

  18. Y. Wang, H.F. Hu, and W.L. Jiao, IEEE Electron Device Lett. 31, 1281 (2010).

    CAS  Google Scholar 

  19. W. Ying, Y.F. Wang, Y.J. Liu, and Y. Wang, Superlattices Microstruct. 102, 399 (2017).

    Article  Google Scholar 

  20. J. Cheng, P. Li, W. Chen, B. Yi, and X.B. Chen, IEEE J. Electron Devices Soc. 6, 1091 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Ding, Q., Chen, J. et al. A Lateral Double-Diffusion Metal Oxide Semiconductor Device with a Gradient Charge Compensation Layer. J. Electron. Mater. 48, 7970–7976 (2019). https://doi.org/10.1007/s11664-019-07579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07579-8

Keywords

Navigation