Skip to main content

Advertisement

SpringerLink
  • Journal of Electronic Materials
  • Journal Aims and Scope
  • Submit to this journal
Enhanced Phonon Boundary Scattering at High Temperatures in Hierarchically Disordered Nanostructures
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis

11 May 2018

Bruno Lorenzi, Riccardo Dettori, … Dario Narducci

Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors

23 November 2020

Neophytos Neophytou, Vassilios Vargiamidis, … Dario Narducci

Tunable Anisotropic Lattice Thermal Conductivity in One-Dimensional Superlattices from Molecular Dynamics Simulations

18 June 2022

Xiuqi Wang, Meng An, … Xing Zhang

Probing thermal transport across amorphous region embedded in a single crystalline silicon nanowire

21 January 2020

Yunshan Zhao, Xiangjun Liu, … John T. L. Thong

Characterization and modeling of the temperature-dependent thermal conductivity in sintered porous silicon-aluminum nanomaterials

21 March 2022

Danny Kojda, Tommy Hofmann, … Klaus Habicht

Phonon Transport Across Coherent and Incoherent Interfaces

22 August 2019

Weixuan Li, Xiang Chen & Shengfeng Yang

Modeling nanostructure thermal conductivity: effect of phonon distribution function

04 November 2022

A. H. Awad

Interfacial heat transport across multilayer nanofilms in ballistic–diffusive regime

23 January 2020

Hafedh Belmabrouk, Houssem Rezgui, … Amen Allah Guizani

Phonon scattering mechanism in thermoelectric materials revised via resonant x-ray dynamical diffraction

01 June 2020

Adriana Valério, Rafaela F. S. Penacchio, … Cláudio M. R. Remédios

Download PDF

Associated Content

Part of a collection:

International Conference on Thermoelectrics 2018

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Open Access
  • Published: 28 January 2019

Enhanced Phonon Boundary Scattering at High Temperatures in Hierarchically Disordered Nanostructures

  • Dhritiman Chakraborty  ORCID: orcid.org/0000-0002-0209-945X1,
  • Laura de Sousa Oliveira1 &
  • Neophytos Neophytou1 

Journal of Electronic Materials volume 48, pages 1909–1916 (2019)Cite this article

  • 385 Accesses

  • 14 Citations

  • Metrics details

Abstract

Boundary scattering in hierarchically disordered nanomaterials is an effective way to reduce the thermal conductivity of thermoelectric materials and increase their performance. In this work, we investigate thermal transport in silicon-based nanostructured materials in the presence of nanocrystallinity and nanopores at the range of 300–900 K using a Monte Carlo simulation approach. The thermal conductivity in the presence of nanocrystallinity follows the same reduction trend as in the pristine material. We show, however, that the relative reduction is stronger with temperature in the presence of nanocrystallinity, a consequence of the wavevector-dependent (q-dependent) nature of phonon scattering on the domain boundaries. In particular, as the temperature is raised, the proportion of large wavevector phonons increases. Since these phonons are more susceptible to boundary scattering, we show that this q-dependent surface scattering could account for as much as a ∼ 40% reduction in the thermal conductivity of nanocrystalline Si. The introduction of nanopores with randomized positions magnifies this effect, which suggests that hierarchical nanostructuring is actually more effective at high temperatures than previously thought.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    Article  Google Scholar 

  2. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  3. B.T. Kearney, B. Jugdersuren, D.R. Queen, T.H. Metcalf, J.C. Culbertson, P.A. Desario, R.M. Stroud, W. Nemeth, Q. Wang, and X. Liu, J. Phys.: Condens. Matter 30, 085301 (2018).

    Google Scholar 

  4. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).

    Article  Google Scholar 

  5. M.T. Dunham, B. Lorenzi, S.C. Andrews, A. Sood, M. Asheghi, D. Narducci, and K.E. Goodson, Appl. Phys. Lett. 109, 253104 (2016).

    Article  Google Scholar 

  6. S. Basu and M. Francoeur, Appl. Phys. Lett. 98, 113106 (2011).

    Article  Google Scholar 

  7. J.A.P. Taborda, M.M. Rojo, J. Maiz, N. Neophytou, and M.M. González, Nat. Sci. Rep. 6, 32778 (2016).

    Article  Google Scholar 

  8. G. Tan, F. Shi, S. Hao, L.D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nat. Commun. 7, 12167 (2016).

    Article  Google Scholar 

  9. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

    Article  Google Scholar 

  10. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, J. Electron. Mater. 43, 1896 (2014).

    Article  Google Scholar 

  11. B. Lorenzi, D. Narducci, R. Tonini, S. Frabboni, G.C. Gazzadi, G. Ottaviani, N. Neophytou, and X. Zianni, J. Electron. Mater. 43, 3812 (2014).

    Article  Google Scholar 

  12. S. Foster, M. Thesberg, and N. Neophytou, Phys. Rev. B 96, 195425 (2017).

    Article  Google Scholar 

  13. V. Vargiamidis, S. Foster, and N. Neophytou, Phys. Status Solidi A 215, 1700997 (2018).

    Article  Google Scholar 

  14. E. Pop, S. Sinha, and K.E. Goodson, J. Electron. Packag. 128, 102 (2006).

    Article  Google Scholar 

  15. D. Lacroix, K. Joulain, and D. Lemonnier, Phys. Rev. B 72, 064305 (2005).

    Article  Google Scholar 

  16. K. Kukita and Y. Kamakura, J. Appl. Phys. 114, 154312 (2013).

    Article  Google Scholar 

  17. E. Pop, R.W. Dutton, and K.E. Goodson, J. Appl. Phys. 96, 4998 (2004).

    Article  Google Scholar 

  18. S. Mazumdar and A. Majumdar, J. Heat Transfer 123, 749 (2001).

    Article  Google Scholar 

  19. S. Wolf, N. Neophytou, and H. Kosina, J. Appl. Phys. 115, 1 (2014).

    Article  Google Scholar 

  20. S. Wolf, N. Neophytou, Z. Stanojevic, and H. Kosina, J. Electron. Mater. 43, 3870 (2014).

    Article  Google Scholar 

  21. L.N. Maurer, Z. Aksamija, E.B. Ramayya, A.H. Davoody, and I. Knezevic, Appl. Phys. Lett. 106, 133108 (2015).

    Article  Google Scholar 

  22. D. Chakraborty, S. Foster, and N. Neophytou, Phys. Rev. B 98, 115435 (2018).

    Article  Google Scholar 

  23. Q. Hao, G. Chen, and M.S. Jeng, J. Appl. Phys. 106, 114321 (2009).

  24. L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).

    Article  Google Scholar 

  25. S. Ju and X. Liang, J. Appl. Phys. 112, 064305 (2012).

    Article  Google Scholar 

  26. M.G. Holland, Phys. Rev. 132, 2461 (1963).

    Article  Google Scholar 

  27. C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys. 111, 093708 (2012).

    Article  Google Scholar 

  28. R. Dettori, C. Melis, X. Cartoixà, R. Rurali, and L. Colombo, Phys. Rev. B 91, 054305 (2015).

    Article  Google Scholar 

  29. Z. Aksamija and I. Knezevic, Phys. Rev. B 90, 035419 (2014).

    Article  Google Scholar 

  30. H. Karamitaheri, N. Neophytou, and H. Kosina, J. Appl. Phys. 115, 024302 (2014).

    Article  Google Scholar 

  31. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, J. Appl. Phys. 93, 793 (2003).

    Article  Google Scholar 

  32. K. Goodson, D.G. Cahill, and A. Majumdar, J. Heat Trans. 124, 223 (2002).

    Article  Google Scholar 

  33. M. Verdier, K. Termentzidis, and D. Lacroix, J. Phys.: IOP Conf. Ser. 785, 012009 (2017).

    Google Scholar 

  34. M. Maldovan, J. Appl. Phys. 110, 114310 (2011).

    Article  Google Scholar 

  35. M. Maldovan, Nature 503, 209 (2013).

    Article  Google Scholar 

  36. S. Uma, A.D. McConnell, M. Asheghi, K. Kurabayashi, and K.E. Goodson, Int. J. Thermophys. 22, 605 (2001).

    Article  Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No. 678763). The authors would also like to thank Dr. Patrizio Graziosi at the University of Warwick for useful discussions.

Author information

Authors and Affiliations

  1. School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

    Dhritiman Chakraborty, Laura de Sousa Oliveira & Neophytos Neophytou

Authors
  1. Dhritiman Chakraborty
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Laura de Sousa Oliveira
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Neophytos Neophytou
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Dhritiman Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., de Sousa Oliveira, L. & Neophytou, N. Enhanced Phonon Boundary Scattering at High Temperatures in Hierarchically Disordered Nanostructures. J. Electron. Mater. 48, 1909–1916 (2019). https://doi.org/10.1007/s11664-019-06959-4

Download citation

  • Received: 23 August 2018

  • Accepted: 12 January 2019

  • Published: 28 January 2019

  • Issue Date: 15 April 2019

  • DOI: https://doi.org/10.1007/s11664-019-06959-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Thermal conductivity
  • phonon transport
  • boundary scattering
  • thermoelectrics
  • nanotechnology
  • nanocrystalline silicon
  • Monte Carlo simulations
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

International Conference on Thermoelectrics 2018

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.