Abstract
Boundary scattering in hierarchically disordered nanomaterials is an effective way to reduce the thermal conductivity of thermoelectric materials and increase their performance. In this work, we investigate thermal transport in silicon-based nanostructured materials in the presence of nanocrystallinity and nanopores at the range of 300–900 K using a Monte Carlo simulation approach. The thermal conductivity in the presence of nanocrystallinity follows the same reduction trend as in the pristine material. We show, however, that the relative reduction is stronger with temperature in the presence of nanocrystallinity, a consequence of the wavevector-dependent (q-dependent) nature of phonon scattering on the domain boundaries. In particular, as the temperature is raised, the proportion of large wavevector phonons increases. Since these phonons are more susceptible to boundary scattering, we show that this q-dependent surface scattering could account for as much as a ∼ 40% reduction in the thermal conductivity of nanocrystalline Si. The introduction of nanopores with randomized positions magnifies this effect, which suggests that hierarchical nanostructuring is actually more effective at high temperatures than previously thought.
References
K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, and M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).
K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).
B.T. Kearney, B. Jugdersuren, D.R. Queen, T.H. Metcalf, J.C. Culbertson, P.A. Desario, R.M. Stroud, W. Nemeth, Q. Wang, and X. Liu, J. Phys.: Condens. Matter 30, 085301 (2018).
Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).
M.T. Dunham, B. Lorenzi, S.C. Andrews, A. Sood, M. Asheghi, D. Narducci, and K.E. Goodson, Appl. Phys. Lett. 109, 253104 (2016).
S. Basu and M. Francoeur, Appl. Phys. Lett. 98, 113106 (2011).
J.A.P. Taborda, M.M. Rojo, J. Maiz, N. Neophytou, and M.M. González, Nat. Sci. Rep. 6, 32778 (2016).
G. Tan, F. Shi, S. Hao, L.D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nat. Commun. 7, 12167 (2016).
N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).
N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, J. Electron. Mater. 43, 1896 (2014).
B. Lorenzi, D. Narducci, R. Tonini, S. Frabboni, G.C. Gazzadi, G. Ottaviani, N. Neophytou, and X. Zianni, J. Electron. Mater. 43, 3812 (2014).
S. Foster, M. Thesberg, and N. Neophytou, Phys. Rev. B 96, 195425 (2017).
V. Vargiamidis, S. Foster, and N. Neophytou, Phys. Status Solidi A 215, 1700997 (2018).
E. Pop, S. Sinha, and K.E. Goodson, J. Electron. Packag. 128, 102 (2006).
D. Lacroix, K. Joulain, and D. Lemonnier, Phys. Rev. B 72, 064305 (2005).
K. Kukita and Y. Kamakura, J. Appl. Phys. 114, 154312 (2013).
E. Pop, R.W. Dutton, and K.E. Goodson, J. Appl. Phys. 96, 4998 (2004).
S. Mazumdar and A. Majumdar, J. Heat Transfer 123, 749 (2001).
S. Wolf, N. Neophytou, and H. Kosina, J. Appl. Phys. 115, 1 (2014).
S. Wolf, N. Neophytou, Z. Stanojevic, and H. Kosina, J. Electron. Mater. 43, 3870 (2014).
L.N. Maurer, Z. Aksamija, E.B. Ramayya, A.H. Davoody, and I. Knezevic, Appl. Phys. Lett. 106, 133108 (2015).
D. Chakraborty, S. Foster, and N. Neophytou, Phys. Rev. B 98, 115435 (2018).
Q. Hao, G. Chen, and M.S. Jeng, J. Appl. Phys. 106, 114321 (2009).
L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).
S. Ju and X. Liang, J. Appl. Phys. 112, 064305 (2012).
M.G. Holland, Phys. Rev. 132, 2461 (1963).
C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys. 111, 093708 (2012).
R. Dettori, C. Melis, X. Cartoixà, R. Rurali, and L. Colombo, Phys. Rev. B 91, 054305 (2015).
Z. Aksamija and I. Knezevic, Phys. Rev. B 90, 035419 (2014).
H. Karamitaheri, N. Neophytou, and H. Kosina, J. Appl. Phys. 115, 024302 (2014).
D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, J. Appl. Phys. 93, 793 (2003).
K. Goodson, D.G. Cahill, and A. Majumdar, J. Heat Trans. 124, 223 (2002).
M. Verdier, K. Termentzidis, and D. Lacroix, J. Phys.: IOP Conf. Ser. 785, 012009 (2017).
M. Maldovan, J. Appl. Phys. 110, 114310 (2011).
M. Maldovan, Nature 503, 209 (2013).
S. Uma, A.D. McConnell, M. Asheghi, K. Kurabayashi, and K.E. Goodson, Int. J. Thermophys. 22, 605 (2001).
Acknowledgments
This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No. 678763). The authors would also like to thank Dr. Patrizio Graziosi at the University of Warwick for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Chakraborty, D., de Sousa Oliveira, L. & Neophytou, N. Enhanced Phonon Boundary Scattering at High Temperatures in Hierarchically Disordered Nanostructures. J. Electron. Mater. 48, 1909–1916 (2019). https://doi.org/10.1007/s11664-019-06959-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-019-06959-4
Keywords
- Thermal conductivity
- phonon transport
- boundary scattering
- thermoelectrics
- nanotechnology
- nanocrystalline silicon
- Monte Carlo simulations