Skip to main content

Thermal Conductivity of Nanostructured Semiconductor Alloys

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

This chapter provides a comprehensive description of phonon transport in nanostructures of silicon-based Group-IV alloys. We employ the phonon Boltzmann transport equation (pBTE) formalism with full phonon dispersion and a partially diffuse momentum-dependent specularity model for boundary roughness scattering. The results show thermal conductivity in Si-Ge nanostructures including thin films, superlattices (SLs), nanowires (NWs), and nanocomposites (NCs) to be well below their bulk counterparts, reaching almost to the amorphous limit. Further minimization of lattice thermal conductivity is shown in binary (SiSn and GeSn) and ternary (SiGeSn) alloys and their thin films. Si-Sn alloys have the lowest conductivity (3 W/mK) of all the bulk alloys, which reduces further to around 1 W/mK in 20-nm-thick Si-Sn films. Thermal transport in nanostructures is tunable by extrinsic boundary effects such as sample size in thin films, period thickness in SLs, length/diameter in NWs, and grain size in NCs. Additionally, boundary/interface properties, such as roughness, orientation, and composition, also play a significant role in thermal transport and offer additional degrees of freedom to control the thermal conductivity in nanostructured semiconductor alloys. Thermal conductivity can be minimized in SLs by growing short-period Si∕Si1−xGex SLs with the Si-Ge alloy layer thicker than the Si one. We describe a Monte Carlo method of sampling the phonon mean free paths (MFPs), capable of capturing both partially diffuse boundaries and ballistic effects in the calculation of thermal conductivity of Si-Ge NWs. The computed phonon flights are comprised of a mix of long free flights over several μm interrupted by bursts of short flights, resulting in a heavy-tailed distribution of flight lengths, indicating superdiffusive phonon transport, which results in L1∕3 scaling across a wide range of NW lengths up to nearly 10 μm. Lastly, our pBTE model for nanocomposites, based on Voronoi tessellation to capture the grain structure in NCs, is described. The size scaling of thermal conductivity observed in NWs persists in NCs as well and is found to be insensitive to the variance in grain sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeles B (1963) Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev 131:1906–1911

    Article  ADS  Google Scholar 

  • Abeles B, Beers DS, Cody GD, Dismukes JP (1962) Thermal conductivity of ge-si alloys at high temperatures. Phys Rev 125(1):44–46

    Article  ADS  Google Scholar 

  • Aksamija Z (2014) Lattice thermal transport in si-based nanocomposites for thermoelectric applications. J Electron Mater 44:1644

    Article  ADS  Google Scholar 

  • Aksamija Z, Knezevic I (2010a) Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys Rev B 82:045,319

    Article  Google Scholar 

  • Aksamija Z, Knezevic I (2010b) Thermoelectric properties of silicon nanostructures. J Comput Electron 9:173

    Article  Google Scholar 

  • Aksamija Z, Knezevic I (2013) Thermal conductivity of si1−xgex/si1−ygey superlattices: competition between interfacial and internal scattering. Phys Rev B 88:155318

    Article  ADS  Google Scholar 

  • Aksamija Z, Knezevic I (2014) Lattice thermal transport in large-scale polycrystalline graphene. Phys Rev B 90:035419

    Article  ADS  Google Scholar 

  • Bartkowiak M, Mahan GD (1995) Nonlinear currents in Voronoi networks. Phys Rev B 51(16):10825–10832

    Article  ADS  Google Scholar 

  • Bejenari I, Kantser V (2008) Thermoelectric properties of bismuth telluride nanowires in the constant relaxation-time approximation. Phys Rev B 78(11):115322

    Article  ADS  Google Scholar 

  • Bera C, Soulier M, Navone C, Roux G, Simon J, Volz S, Mingo N (2010) Thermoelectric properties of nanostructured si[sub 1 - x]ge[sub x] and potential for further improvement. J Appl Phys 108(12):124306

    Article  ADS  Google Scholar 

  • Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J, III WAG, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168

    Article  ADS  Google Scholar 

  • Braginsky L, Lukzen N, Shklover V, Hofmann H (2002) High-temperature phonon thermal conductivity of nanostructures. Phys Rev B 66(13):134203

    Article  ADS  Google Scholar 

  • Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46(10):6131–6140

    Article  ADS  Google Scholar 

  • Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillipot SR (2003) Nanoscale thermal transport. J Appl Phys 93:793–818

    Article  ADS  Google Scholar 

  • Cahill DG, Braun PV, Chen G, Clarke DR, Fan S, Goodson KE, Keblinski P, King WP, Mahan GD, Majumdar A, Maris HJ, Phillpot SR, Pop E, Shi L (2014) Nanoscale thermal transport. II. 2003–2012. Apr 1(1):011305

    Google Scholar 

  • Carruthers P (1961) Theory of thermal conductivity of solids at low temperatures. Rev Mod Phys 33(1):92

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Cheaito R, Duda JC, Beechem TE, Hattar K, Ihlefeld JF, Medlin DL, Rodriguez MA, Campion MJ, Piekos ES, Hopkins PE (2012) Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films. Phys Rev Lett 109:195901

    Article  ADS  Google Scholar 

  • Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57(23):14958–14973

    Article  ADS  Google Scholar 

  • Chen J, Zhang G, Li B (2009) Tunable thermal conductivity of si[sub 1 - x]ge[sub x] nanowires. Appl Phys Lett 95(7):073117

    Article  ADS  Google Scholar 

  • Chen Y, Li D, Lukes JR, Majumdar A (2005) Monte Carlo simulation of silicon nanowire thermal conductivity. J Heat Transf 127(10):1129–1137

    Article  Google Scholar 

  • Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R (2009) On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nano 4:235–238

    Article  ADS  Google Scholar 

  • Cipriani P, Denisov S, Politi A (2005) From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems. Phys Rev Lett 94:244301

    Article  ADS  Google Scholar 

  • Colombo L, Giannozzi P (1995) A first-principles derived parametrization of the adiabatic bond charge model. Solid State Commun 96:49

    Article  ADS  Google Scholar 

  • Denisov S, Klafter J, Urbakh M (2003) Dynamical heat channels. Phys Rev Lett 91:194301

    Article  ADS  Google Scholar 

  • Dhar A (2008) Heat transport in low-dimensional systems. Adv Phys 57(5):457–537

    Article  ADS  Google Scholar 

  • Dhar A, Saito K, Derrida B (2013) Exact solution of a lévy walk model for anomalous heat transport. Phys Rev E 87:010103

    Article  ADS  Google Scholar 

  • DiSalvo FJ (1999) Thermoelectric cooling and power generation 285:703–706

    Google Scholar 

  • Dismukes JP, Ekstrom L, Steigmeier EF, Kudman I, Beers DS (1964) Thermal and electrical properties of heavily doped ge-si alloys up to 1300[degree]K. J Appl Phys 35(10):2899–2907

    Article  ADS  Google Scholar 

  • Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

    Article  Google Scholar 

  • Esfarjani K, Chen G, Stokes HT (2011) Heat transport in silicon from first-principles calculations. Phys Rev B 84:085204

    Article  ADS  Google Scholar 

  • Fan Z, Wu Y, Zhao X, Lu Y (2004) Simulation of polycrystalline structure with Voronoi diagram in laguerre geometry based on random closed packing of spheres. Comput Mat Sci 29(3):301–308

    Article  Google Scholar 

  • Ferenc JS, Nda Z (2007) On the size distribution of poisson Voronoi cells. Phys A Statis Mech Appl 385(2):518–526

    Article  Google Scholar 

  • Feser JP, Chan EM, Majumdar A, Segalman RA, Urban JJ (2013) Ultralow thermal conductivity in polycrystalline cdse thin films with controlled grain size. Nano Lett 13(5):2122–2127

    Article  ADS  Google Scholar 

  • Fischer IA, Wendav T, Augel L, Jitpakdeebodin S, Oliveira F, Benedetti A, Stefanov S, Chiussi S, Capellini G, Busch K et al (2015) Growth and characterization of SiGeSn quantum well photodiodes. Opt Express 23:25048

    Article  ADS  Google Scholar 

  • Fischetti MV, Laux SE (1996) Band structure, deformation potentials, and carrier mobility in strained si, ge, and sige alloys. J Appl Phys 80(4):2234–2252

    Article  ADS  Google Scholar 

  • Frachioni A, White BE (2012) Simulated thermal conductivity of silicon-based random multilayer thin films. J Appl Phys 112(1):014320

    Article  ADS  Google Scholar 

  • Gaiduk PI, Lundsgaard Hansen J, Nylandsted Larsen A, Bregolin FL, Skorupa W (2014) Suppression of tin precipitation in SiSn alloy layers by implanted carbon. Appl Phys Lett 104(23):231903

    Article  ADS  Google Scholar 

  • Garg J, Bonini N, Kozinsky B, Marzari N (2011) Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys Rev Lett 106:045901

    Article  ADS  Google Scholar 

  • Gilat G (1972) Analysis of methods for calculating spectral properties in solids. J Comput Phys 10(3):432–465

    Article  ADS  Google Scholar 

  • Gilat G, Kam Z (1969) High-resolution method for calculating spectra of solids. Phys Rev Lett 22(14):715–717

    Article  ADS  Google Scholar 

  • Gilat G, Raubenheimer LJ (1966) Accurate numerical method for calculating frequency-distribution functions in solids. Phys Rev 144(2):390–395

    Article  ADS  Google Scholar 

  • Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon and germanium from 3K to the melting point. Phys Rev 134(4A):A1058–A1069

    Article  ADS  Google Scholar 

  • Goncalves LM, Couto C, Alpuim P, Rolo A, Völklein F, Correia JH (2010) Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films 518(10):2816–2821

    Article  ADS  Google Scholar 

  • Hicks L, Dresselhaus M (1993a) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727

    Article  ADS  Google Scholar 

  • Hicks L, Dresselhaus M (1993b) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631

    Article  ADS  Google Scholar 

  • Hochbaum A, Chen R, Delgado R, Liang W, Garnett E, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163

    Article  ADS  Google Scholar 

  • Hori T, Shiomi J, Dames C (2015) Effective phonon mean free path in polycrystalline nanostructures. Appl Phys Lett 106(17):171901

    Article  ADS  Google Scholar 

  • Hsiao TK, Chang HK, Liou SC, Chu MW, Lee SC, Chang CW (2013) Observation of room-temperature ballistic thermal conduction persisting over 8.3 μm in sige nanowires. Nat Nano 8(7):534–538

    Article  Google Scholar 

  • Huxtable ST, Abramson AR, Tien CL, Majumdar A, LaBounty C, Fan X, Zeng G, Bowers JE, Shakouri A, Croke ET (2002) Thermal conductivity of si/sige and sige/sige superlattices. Appl Phys Lett 80(10):1737–1739

    Article  ADS  Google Scholar 

  • Jeng MS, Yang R, Song D, Chen G (2008) Modeling the thermal conductivity and phonon transport in nanoparticle composites using monte carlo simulation. J Heat Transf 130:042410

    Article  Google Scholar 

  • Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, Gould RW, Cuff DC, Tang MY, Dresselhaus MS, Chen G, Ren Z (2008) Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett 8(12):4670–4674

    Article  ADS  Google Scholar 

  • Kazan M, Volz S (2014) Calculation of the lattice thermal conductivity in granular crystals. J Appl Phys 115(7):073509

    Article  ADS  Google Scholar 

  • Khatami SN, Aksamija Z (2016) Lattice thermal conductivity of the binary and ternary group-iv alloys si-sn, ge-sn, and si-ge-sn. Phys Rev Appl 6:014015

    Article  ADS  Google Scholar 

  • Khitun A, Balandin A, Wang KL (1999) Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons. Superlattice Microst 26(3):181

    Article  ADS  Google Scholar 

  • Khitun A, Balandin A, Liu JL, Wang KL (2001) The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity. Superlattice Microst 30(1):1–8

    Article  ADS  Google Scholar 

  • Kim H, Kim I, jin Choi H, Kim W (2010) Thermal conductivities of si1−xgex nanowires with different germanium concentrations and diameters. Appl Phys Lett 96:233106

    Google Scholar 

  • Klemens P (1958) Solid state physics. Academic Press, New York

    Google Scholar 

  • Klemens PG (1960) Thermal resistance due to point defects at high temperatures. Phys Rev 119(2):507–509

    Article  ADS  Google Scholar 

  • Kouvetakis J, Menendaz J, Chizmeshya AVG (2006) Tin-based group IV semiconductors: new platforms for opto- and microelectronic on silicon. Annu Rev Mater Res 36:497–554

    Article  ADS  Google Scholar 

  • Kurosawa M, Kato M, Yamaha T, Taoka N, Nakatsuka O, Zaima S (2015) Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers. Appl Phys Lett 106(17):171908

    Article  ADS  Google Scholar 

  • Kurosawa M, Kato M, Takahashi K, Nakatsuka O, Zaima S (2017) Self-organized lattice-matched epitaxy of si1−xsnx alloys on (001)-oriented si, ge, and inp substrates. Appl Phys Lett 111:192106

    Article  ADS  Google Scholar 

  • Lacroix D, Joulain K, Terris D, Lemonnier D (2006) Monte carlo simulation of phonon confinement in silicon nanostructures: application to the determination of the thermal conductivity of silicon nanowires. Appl Phys Lett 89(10):103104

    Article  ADS  Google Scholar 

  • Lan Y, Poudel B, Ma Y, Wang D, Dresselhaus MS, Chen G, Ren Z (2009) Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett 9:1419–1422

    Article  ADS  Google Scholar 

  • Lan Y, Minnich AJ, Chen G, Ren Z (2010) Enhancement of thermoelectric Figure-of-Merit by a bulk nanostructuring approach. Adv Func Mater 20(3):357–376

    Article  Google Scholar 

  • Larkin JM, McGaughey AJH (2013) Predicting alloy vibrational mode properties using lattice dynamics calculations, molecular dynamics simulations, and the virtual crystal approximation. J Appl Phys 114(2):023507

    Article  ADS  Google Scholar 

  • Lee EK, Yin L, Lee Y, Lee JW, Lee SJ, Lee J, Cha SN, Whang D, Hwang GS, Hippalgaonkar K, Majumdar A, Yu C, Choi BL, Kim JM, Kim K (2012) Large thermoelectric figure-of-merits from sige nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett 12:2918–2923

    Article  ADS  Google Scholar 

  • Lee ML, Venkatasubramanian R (2008) Effect of nanodot areal density and period on thermal conductivity in sige/si nanodot superlattices. Appl Phys Lett 92(5):053112

    Article  ADS  Google Scholar 

  • Lee SM, Cahill DG, Venkatasubramanian R (1997) Thermal conductivity of si–ge superlattices. Appl Phys Lett 70(22):2957–2959

    Article  ADS  Google Scholar 

  • Lepri S, Livi R, Politi A (2003) Thermal conduction in classical low-dimensional lattices. Phys Reports 377(1):1–80

    Article  MathSciNet  ADS  Google Scholar 

  • Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83:2934–2936

    Article  ADS  Google Scholar 

  • Li Y, Liu S, Li N, Hnggi P, Li B (2015) 1d momentum-conserving systems: the conundrum of anomalous versus normal heat transport. New J Phys 17(4):043064

    Article  MathSciNet  Google Scholar 

  • Liao CN, Chen C, Tu KN (1999) Thermoelectric characterization of si thin films in silicon-on-insulator wafers. J Appl Phys 86(6):3204–3208

    Article  ADS  Google Scholar 

  • Liu S, Hänggi P, Li N, Ren J, Li B (2014) Anomalous heat diffusion. Phys Rev Lett 112:040601

    Article  ADS  Google Scholar 

  • Liu W, Asheghi M (2005) Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J Appl Phys 98(12):123523

    Article  ADS  Google Scholar 

  • Liu W, Balandin AA (2005) Thermal conduction in alxga1xn alloys and thin films. J Appl Phys 97:073710

    Article  ADS  Google Scholar 

  • Liu W, Borca-Tasciuc T, Chen G, Liu J, Wang K (2001) Anisotropic thermal conductivity of ge quantum-dot and symmetrically strained si/ge superlattices. J Nanosci Nanotechnol 1:39–42(4)

    Article  Google Scholar 

  • Liu W, Yan X, Chen G, Ren Z (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1(1):42–56

    Article  Google Scholar 

  • Mai T, Dhar A, Narayan O (2007) Equilibration and universal heat conduction in fermi-pasta-ulam chains. Phys Rev Lett 98:184301

    Article  ADS  Google Scholar 

  • Majumdar A (2004) Thermoelectricity in semiconductor nanostructures. Science 303(5659): 777–778

    Article  Google Scholar 

  • Maris HJ (1990) Phonon propagation with isotope scattering and spontaneous anharmonic decay. Phys Rev B 41(14):9736–9743

    Article  ADS  Google Scholar 

  • Martin P, Aksamija Z, Pop E, Ravaioli U (2009) Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. Phys Rev Lett 102(12):125503

    Article  ADS  Google Scholar 

  • Maurer LN, Aksamija Z, Ramayya EB, Davoody AH, Knezevic I (2015) Universal features of phonon transport in nanowires with correlated surface roughness. Appl Phys Lett 106(13):133108

    Article  ADS  Google Scholar 

  • Maycock P (1967) Thermal conductivity of silicon, germanium, III-V compounds and III-V alloys 10:161–168

    Google Scholar 

  • Mazumder S, Majumdar A (2001) Monte carlo study of phonon transport in solid thin films including dispersion and polarization. J Heat Transf 123(4):749

    Article  Google Scholar 

  • McGaughey AJH, Jain A (2012) Nanostructure thermal conductivity prediction by monte carlo sampling of phonon free paths. Appl Phys Lett 100(6):061911

    Article  ADS  Google Scholar 

  • Min KS, Atwater HA (1998) Ultrathin pseudomorphic Sn/Si and SnxSi1−x/Si heterostructures. Appl Phys Lett 72(15):1884–1886

    Article  ADS  Google Scholar 

  • Minnich AJ, Lee H, Wang XW, Joshi G, Dresselhaus MS, Ren ZF, Chen G, Vashaee D (2009) Modeling study of thermoelectric SiGe nanocomposites. Phys Rev B 80(15):155327

    Article  ADS  Google Scholar 

  • Moontragoon P, Soref RA, Ikonic Z (2012) The direct and indirect bandgaps of unstrained SixGe1−xySny and their photonic device applications. J Appl Phys 112(7):073106

    Article  ADS  Google Scholar 

  • Morelli DT, Heremans JP, Slack GA (2002) Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys Rev B 66(19):195304

    Article  ADS  Google Scholar 

  • Neophytou N, Zianni X, Kosina H, Frabboni S, Lorenzi B, Narducci D (2013) Simultaneous increase in electrical conductivity and seebeck coefficient in highly boron-doped nanocrystalline si. Nanotechnology 24(20):205402

    Article  ADS  Google Scholar 

  • Péraud JPM, Hadjiconstantinou NG (2011) Efficient simulation of multidimensional phonon transport using energy-based variance-reduced monte carlo formulations. Phys Rev B 84:205331

    Article  ADS  Google Scholar 

  • Pop E (2010) Energy dissipation and transport in nanoscale devices. Nano Res 3(3):147–169

    Article  Google Scholar 

  • Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876):634–638

    Article  ADS  Google Scholar 

  • Priolo A, Jaeger HM, Dammers AJ, Radelaar S (1992) Conductance of two-dimensional disordered Voronoi networks. Phys Rev B 46(22):14889–14892

    Article  ADS  Google Scholar 

  • Rajput BD, Browne DA (1996) Lattice dynamics of II-VI materials using the adiabatic bond-charge model. Phys Rev B 53(14):9052–9058

    Article  ADS  Google Scholar 

  • Ramayya EB, Maurer LN, Davoody AH, Knezevic I (2012) Thermoelectric properties of ultrathin silicon nanowires. Phys Rev B 86:115328

    Article  ADS  Google Scholar 

  • Randrianalisoa J, Baillis D (2008) Monte carlo simulation of steady–state microscale phonon heat transport. J Heat Transf 130:072404

    Article  Google Scholar 

  • Rieger MM, Vogl P (1993) Electronic-band parameters in strained si1−xgex alloys on si1−ygey substrates. Phys Rev B 48(19):14276–14287

    Article  ADS  Google Scholar 

  • Rustagi KC, Weber W (1976) Adiabatic bond charge model for the phonons in a3b5 semiconductors. Solid State Commun 18(6):673–675

    Article  ADS  Google Scholar 

  • Ryu HJ, Aksamija Z, Paskiewicz DM, Scott SA, Lagally MG, Knezevic I, Eriksson MA (2010) Quantitative determination of contributions to the thermoelectric power factor in si nanostructures. Phys Rev Lett 105:256601

    Article  ADS  Google Scholar 

  • Saito K, Dhar A (2010) Heat conduction in a three dimensional anharmonic crystal. Phys Rev Lett 104:040601

    Article  ADS  Google Scholar 

  • Sellan DP, Turney JE, McGaughey AJH, Amon CH (2010) Cross-plane phonon transport in thin films. J Appl Phys 108(11):113524

    Article  ADS  Google Scholar 

  • Shi L, Yao D, Zhang G, Li B (2009) Size dependent thermoelectric properties of silicon nanowires. Appl Phys Lett 95(6):063102

    Article  ADS  Google Scholar 

  • Shiomi J (2016) Research update: phonon engineering of nanocrystalline silicon thermoelectrics. APL Mater 4(10):104504

    Article  ADS  Google Scholar 

  • Shlesinger MF, Zaslavsky GM, Klafter J (1993) Strange kinetics. Nature 363:31–37

    Article  ADS  Google Scholar 

  • Simkin MV, Mahan GD (2000) Minimum thermal conductivity of superlattices. Phys Rev Lett 84(5):927–930

    Article  ADS  Google Scholar 

  • Slack G (1979) Solid state physics, vol 34. Academic Press, New York

    Google Scholar 

  • Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nature Matter 7:105–114

    Article  ADS  Google Scholar 

  • Soffer SB (1967) Statistical model for the size effect in electrical conduction. J Appl Phys 38(4):1710–1715

    Article  ADS  Google Scholar 

  • Soref R, Kouvetakis J, Tolle J, Menendez J, D’Costa V (2007) Advances in SiGeSn technology. J Mat Res 22:3281–3291

    Article  ADS  Google Scholar 

  • Strauch D, Dorner B (1990) Phonon dispersion in GaAs. J Phys Condens Matter 2:1457–1474

    Article  ADS  Google Scholar 

  • Tamura SI (1983) Isotope scattering of dispersive phonons in Ge. Phys Rev B 27(2):858–866

    Article  ADS  Google Scholar 

  • Thumfart L, Carrete J, Vermeersch B, Ye N, Truglas T, Feser J, Groiss H, Mingo N, Rastelli A (2017) Thermal transport through Ge-rich Ge/Si superlattices grown on Ge(001). J Phys D Appl Phys 51(1):014001

    Article  ADS  Google Scholar 

  • Tian Z (2011) On the importance of optical phonons to thermal conductivity in nanostructures. Appl Phys Lett 99(5):053122

    Article  ADS  Google Scholar 

  • Tonkikh AA, Zakharov ND, Eisenschmidt C, Leipner HS, Werner P (2014) Aperiodic SiSn/Si multilayers for thermoelectric applications. J Crys Growth 392:49–51

    Article  ADS  Google Scholar 

  • Turney JE, McGaughey AJH, Amon CH (2010) In-plane phonon transport in thin films. J Appl Phys 107(2):024317

    Article  ADS  Google Scholar 

  • Uchida NI, Maeda T, Lieten RR, Okajima S, Ohishi Y, Takase R, Ishimaru M, Locquet JP (2015) Carrier and heat transport properties of polycrystalline GeSn films on SiO2. Appl Phys Lett 107(23):232105

    Article  ADS  Google Scholar 

  • Upadhyaya M, Aksamija Z (2016) Non-diffusive lattice thermal transport in Si-Ge alloy nanowires. Phys Rev B 94(17):174303

    Article  ADS  Google Scholar 

  • Upadhyaya M, Khatami SN, Aksamija Z (2015) Engineering thermal transport in SiGe-based nanostructures for thermoelectric applications. J Mater Res 30:2649–2662

    Article  ADS  Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597

    Article  ADS  Google Scholar 

  • Vermeersch B, Carrete J, Mingo N, Shakouri A (2015) Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations. Phys Rev B 91:085202

    Google Scholar 

  • Vermeersch B, Carrete J, Mingo N (2016) Cross-plane heat conduction in thin films with ab-initio phonon dispersions and scattering rates. Appl Phys Lett 108(19):193104

    Article  ADS  Google Scholar 

  • Vining CB (2009) An inconvenient truth about thermoelectrics. Nat Matter 8(2):83–85

    Article  ADS  Google Scholar 

  • Wang XW, Lee H, Lan YC, Zhu GH, Joshi G, Wang DZ, Yang J, Muto AJ, Tang MY, Klatsky J, Song S, Dresselhaus MS, Chen G, Ren ZF (2008) Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett 93(19):193121

    Article  ADS  Google Scholar 

  • Wang Z, Mingo N (2010) Diameter dependence of sige nanowire thermal conductivity. Appl Phys Lett 97(10):101903

    Article  ADS  Google Scholar 

  • Wang Z, Mingo N (2011) Absence of casimir regime in two-dimensional nanoribbon phonon conduction. Appl Phys Lett 99(10):101903

    Article  ADS  Google Scholar 

  • Ward A, Broido DA (2010) Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys Rev B 81(8):085205

    Article  ADS  Google Scholar 

  • Weber W (1974) New bond-charge model for the lattice dynamics of diamond-type semiconductors. Phys Rev Lett 33(6):371–373

    Article  ADS  Google Scholar 

  • Weber W (1977) Adiabatic bond charge model for the phonons in diamond, si, ge, and a-sn. Phys Rev B 15(10):4789

    Article  ADS  Google Scholar 

  • Xie G, Guo Y, Wei X, Zhang K, Sun L, Zhong J, Zhang G, Zhang YW (2014) Phonon mean free path spectrum and thermal conductivity for si1xgex nanowires. Appl Phys Lett 104(23):233901

    Article  ADS  Google Scholar 

  • Yang B, Chen G (2001) Lattice dynamics study of anisotropic heat conduction in superlattices. Microscale Thermophys Eng 5(2):107–116

    Article  Google Scholar 

  • Yang N, Zhang G, Li B (2010) Violation of fourier’s law and anomalous heat diffusion in silicon nanowires. Nano Today 5:85–90

    Article  Google Scholar 

  • Yin L, Kyung Lee E, Woon Lee J, Whang D, Lyong Choi B, Yu C (2012) The influence of phonon scatterings on the thermal conductivity of sige nanowires. Appl Phys Lett 101(4):043114

    Article  ADS  Google Scholar 

  • Zaburdaev V, Denisov S, Klafter J (2015) Lévy walks. Rev Mod Phys 87:483–530

    Article  ADS  Google Scholar 

  • Zebarjadi M, Esfarjani K, Bian Z, Shakouri A (2011) Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution. Nano Lett 11:225–230

    Article  ADS  Google Scholar 

  • Zhu GH, Lee H, Lan YC, Wang XW, Joshi G, Wang DZ, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus MS, Chen G, Ren ZF (2009) Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys Rev Lett 102(19):196803

    Article  ADS  Google Scholar 

  • Zhu Z, Xiao J, Sun H, Hua Y, Cao R, Wanga Y, Zhao L, Zhuang J (2015) Composition-dependent band gaps and indirect-direct band gap transitions of group-IV semiconductor alloys. Phys Chem Chem Phys 17(33):21605–21610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Aksamija .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Upadhyaya, M., Aksamija, Z. (2018). Thermal Conductivity of Nanostructured Semiconductor Alloys. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_16-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics