Skip to main content
Log in

Pseudocapacitive NiO/NiSnO3 Electrode for Supercapacitor Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

NiO/NiSnO3 nanocomposite synthesis was accomplished by a hydrothermal method. The role of polyvinylpyrrolidone and experimental parameters in the configuration of NiO/NiSnO3 nanocomposite was studied by employing standard characterization techniques. Electrochemical properties were demonstrated by adopting cyclic voltammetry, electro-impedance spectra and galvanostatic charging and discharging studies. All the obtained products have contact resistance Rct of 0.72 Ω at low frequency arising from the resistance between the working electrode and the electrolyte. The NiO/NiSnO3 nanocomposite superior properties may arise from nanosized rod morphology due to their inherent properties having a significant impact on their electrochemical properties. The specific capacitance for RSA3 can be estimated as 524 F/g at a current density of 0.5 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan, M.C. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, S.J. Pennycook, B.J. Hwang, and H. Dai, Nat. Commun. 5, 4695 (2014).

    Article  CAS  Google Scholar 

  2. J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, Nat. Nano 11, 75 (2016).

    Article  Google Scholar 

  3. A.D. Jagadale, D.P. Dubal, and C.D. Lokhande, Mater. Res. Bull. 47, 672 (2012).

    Article  CAS  Google Scholar 

  4. C.D. Lokhande, D.P. Dubal, and O.S. Joo, Curr. Appl. Phys. 11, 255 (2011).

    Article  Google Scholar 

  5. M. Liu, J. Chang, J. Sun, and L. Gao, Electrochim. Acta 107, 9 (2013).

    Article  CAS  Google Scholar 

  6. Y.C. Hsieh, K.T. Lee, Y.P. Lin, N.I. Wu, and S.W. Donne, J. Power Sources 177, 660 (2008).

    Article  CAS  Google Scholar 

  7. J.B. Wu, Y. Lin, X.H. Xia, J.Y. Xu, and Q.Y. Shi, Electrochim. Acta 56, 7163 (2011).

    Article  CAS  Google Scholar 

  8. Y.Y. Xi, D. Li, A.B. Djurisic, M.H. Xie, K.Y.K. Man, and W.K. Chan, Electrochem. Solid-State Lett. 11, D56 (2008).

    Article  CAS  Google Scholar 

  9. N.I. Wu, C.Y. Han, and S.L. Kuo, J. Power Sources 109, 418 (2002).

    Article  CAS  Google Scholar 

  10. H. Cui, Y. Liu, and W. Ren, Adv. Powder Technol. 24, 93 (2013).

    Article  CAS  Google Scholar 

  11. C. Lin, J.A. Ritter, and B.N. Popov, J. Electrochem. Soc. 145, 4097 (1998).

    Article  CAS  Google Scholar 

  12. D.D. Zhao, S.J. Bao, W.J. Zhou, and H.L. Li, Electrochem. Commun. 9, 869 (2007).

    Article  CAS  Google Scholar 

  13. N.H. Alshareef, D. Whitehair, and C. Xia, J. Electron. Mater. 46, 1628 (2017).

    Article  CAS  Google Scholar 

  14. J.W. Mao, C.H. He, J.Q. Qi, A.B. Zhang, Y.W. Sui, Y.Z. He, Q.K. Meng, and F.X. Wei, J. Electron. Mater. 47, 512 (2018).

    Article  CAS  Google Scholar 

  15. C.Y. Liao, H.H. Chien, Y.C. Hao, C.W. Chen, I.S. Yu, and J.Z. Chen, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6260-3.

    Article  Google Scholar 

  16. S. Konwer, R. Boruah, and S.K. Dolui, J. Electron. Mater. 40, 2248 (2011).

    Article  CAS  Google Scholar 

  17. B.P. Relekar, S.A. Mahadik, S.T. Jadhav, A.S. Patil, R.R. Koli, G.M. Lohar, and V.J. Fulari, J. Electron. Mater. 47, 2731 (2018).

    CAS  Google Scholar 

  18. J. Zhu, H. Shi, X. Zhuo, and Y. Hu, J. Electron. Mater. 46, 5995 (2017).

    Article  CAS  Google Scholar 

  19. M. Shahraki, S. Elyasi, H. Heydari, and N. Dalir, J. Electron. Mater. 46, 4948 (2017).

    Article  CAS  Google Scholar 

  20. H. Xu, J. Tang, Y. Chen, J. Liu, J. Pu, and Q. Li, J. Electron. Mater. 46, 6150 (2017).

    Article  CAS  Google Scholar 

  21. X. Zhong, L. Zhang, J. Tang, J. Chai, J. Xu, L. Cao, M. Yang, M. Yang, W. Kong, S. Wang, H. Cheng, Z. Lu, C. Cheng, B. Xu, and H. Pan, J. Mater. Chem. A 5, 17954 (2017).

    Article  CAS  Google Scholar 

  22. X. Zhong, J. Tang, L. Cao, W. Kong, Z. Sun, H. Cheng, Z. Lu, H. Pan, and B. Xu, Electrochim. Acta 244, 112 (2017).

    Article  CAS  Google Scholar 

  23. H. Pan, J. Li, and Y. Feng, Nanoscale Res. Lett. 5, 654 (2010).

    Article  CAS  Google Scholar 

  24. H. Pan, C.K. Poh, Y.P. Feng, and J. Lin, Chem. Mater. 19, 6120 (2007).

    Article  CAS  Google Scholar 

  25. R.E. Dietz, W.F. Brinkman, A.E. Meixner, and H. Guggenheim, J. Phys. Rev. Lett. 27, 814 (1971).

    Article  CAS  Google Scholar 

  26. M. Pressl, M. Mayer, P. Knoll, S. Lo, U. Hohenester, and E.H. Schweiger, J. Raman Spectrosc. 27, 343 (1996).

    Article  CAS  Google Scholar 

  27. D.J. Lockwood, M.G. Cottam, and J.H. Baskey, J. Magn. Magn. Mater. 1053, 104 (1992).

    Google Scholar 

  28. R.E. Dietz, G.I. Parisot, and A.E. Meixner, Phys. Rev. B 4, 2302 (1971).

    Article  Google Scholar 

  29. L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, and M. Roumyantseva, J. Solid State Chem. 135, 78 (1998).

    Article  CAS  Google Scholar 

  30. N. Bai, S.G. Li, H.Y. Chen, and W.Q. Peng, J. Mater. Chem. 11, 3099 (2001).

    Article  CAS  Google Scholar 

  31. W.Y. Lin, W.Q. Peng, J.Z. Sun, and J.C. Shen, J. Mater. Chem. 9, 641 (1999).

    Article  CAS  Google Scholar 

  32. G. Soacrates, Mater. Sci. Eng. B 157, 101 (2009).

    Article  Google Scholar 

  33. D.S. Priya, R. Suriyaprabha, R. Yuvakkumar, and V. Rajendran, J. Nanoparticle Res. 16, 2248 (2014).

    Article  Google Scholar 

  34. S. Sankarrajan, S. Aravindan, R. Yuvakkumar, K. Sakthipandi, and V. Rajendran, J. Magn. Magn. Mater. 321, 3611 (2009).

    Article  CAS  Google Scholar 

  35. R. Yuvakkumar and S.I. Hong, Adv. Mater. Res. 1051, 39 (2014).

    Article  Google Scholar 

  36. J. Suresh, R. Yuvakkumar, M. Sundrarajan, and S.I. Hong, Adv. Mater. Res. 952, 141 (2014).

    Article  Google Scholar 

  37. B. Yu, L. Guo, Z. Yang, C. Zhu, F. Gan, G. Zhang, G. Tang, X. Wu, and W. Chen, Phys. Lett. A 251, 67 (1999).

    Article  CAS  Google Scholar 

  38. B. Saravanakumar, S. Muthu Lakshmi, G. Ravi, V. Ganesh, A. Sakunthala, and R. Yuvakkumar, J. Alloys Compd. 723, 115 (2017).

    Article  CAS  Google Scholar 

  39. B. Saravanakumar, T. Priyadharshini, G. Ravi, V. Ganesh, A. Sakunthala, and R. Yuvakkumar, J. Sol-Gel Sci. Technol. 84, 297 (2017).

    Article  CAS  Google Scholar 

  40. B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, A. Sakunthala, and R. Yuvakkumar, Mater. Lett. 209, 1 (2017).

    Article  CAS  Google Scholar 

  41. B. Saravanakumar, S. Muthulakshmi, G. Ravi, V. Ganesh, A. Sakunthala, and R. Yuvakkumar, Appl. Phys. A 123, 697 (2017).

    Article  Google Scholar 

  42. R.S. Nicholson, Anal. Chem. 37, 1351 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yuvakkumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, B., Shobana, R., Ravi, G. et al. Pseudocapacitive NiO/NiSnO3 Electrode for Supercapacitor Applications. J. Electron. Mater. 47, 6390–6395 (2018). https://doi.org/10.1007/s11664-018-6611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6611-0

Keywords

Navigation