Skip to main content
Log in

Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PANI/GO) were synthesized on stainless steel mesh substrates in H2SO4 solution via electrochemical codeposition. Different concentrations of graphene oxide (GO) were incorporated into the films to improve the electrochemical performance of the electrodes. Electrochemical properties of the films were tested by cyclic voltammetry, galvanostatic charge–discharge tests, and electrochemical impedance spectroscopy, in a three-electrode system. The maximum specific capacitance of the Zn2+/PANI/GO film with a GO concentration of 15 mg L−1 was found to be 1266 F g−1 at a scan rate of 3 mV s−1. This value was higher than that of a Zn2+ doped polyaniline (Zn2+/PANI) film (814 F g−1). The Zn2+/PANI/GO film also showed good cycling stability, retaining over 86% of its initial capacitance after 1000 cycles. These results indicate that the Zn2+/PANI/GO composites can be applied as high performance supercapacitor electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Hu, E.B. Zhao, N. Nitta, A. Magasinski, G. Berdichevsky, and G. Yushin, J. Power Sources 326, 6 (2016).

    Article  Google Scholar 

  2. C.C. Hu, H.H. Xu, X.X. Liu, F. Zou, L. Qie, Y.H. Huang, and X.L. Hu, Sci. Rep. 5, 16012 (2015).

    Article  Google Scholar 

  3. Z. Yu, B. Duong, D. Abbitt, and J. Thomas, Adv. Mater. 25, 5 (2013).

    Google Scholar 

  4. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z.L. Wang, Nat. Energy 1, 8 (2016).

    Google Scholar 

  5. Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 29 (2015).

    Google Scholar 

  6. Y. Hou, Y. Cheng, T. Hobson, and J. Liu, Nano Lett. 10, 7 (2010).

    Article  Google Scholar 

  7. Y. Zhang, G.Y. Li, Y. Lv, L.Z. Wang, A.Q. Zhang, Y.H. Song, and B.L. Huang, Int. J. Hydrog. Energy 36, 7 (2011).

    Google Scholar 

  8. L. Cui, J. Li, and X.G. Zhang, J. Appl. Electrochem. 39, 6 (2009).

    Article  Google Scholar 

  9. G.R. Li, Z.P. Feng, J.H. Zhong, Z.L. Wang, and Y.X. Tong, Macromolecules 43, 6 (2010).

    Google Scholar 

  10. L.B. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. 106, 21490 (2009).

    Article  Google Scholar 

  11. K.S. Kim and S.J. Park, Electrochimi. Acta. 56, 7 (2011).

    Google Scholar 

  12. K. Gopalakrishnana, S. Sultana, A. Govindarajb, and C.N.R. Rao, Nano Energy 12, 7 (2015).

    Article  Google Scholar 

  13. V. Khomenko, E. Frankowiak, and F. Beguin, Electrochimi. Acta. 50, 8 (2005).

    Google Scholar 

  14. L.X. Li, H.H. Song, Q.C. Zhang, J.Y. Yao, and X.H. Chen, J. Power Sources 187, 7 (2009).

    Google Scholar 

  15. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, Electrochem. Commun. 11, 4 (2009).

    Google Scholar 

  16. M.D. Stoller, S.J. Park, Y.W. Zhu, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  Google Scholar 

  17. B. Xu, S.F. Yue, Z.Y. Sui, X.T. Zhang, S.S. Hou, G.P. Cao, and Y.S. Yang, Energy Environ. Sci. 4, 5 (2011).

    Google Scholar 

  18. L. Ma, L.J. Su, J. Zhang, D.Y. Zhao, Ch.L. Qin, Zh. Jin, and K. Zhao, J. Electroanal. Chem. 777, 10 (2016).

    Article  Google Scholar 

  19. Q.Q. Zhang, Y. Li, Y.Y. Feng, and W. Feng, Electrochim. Acta 90, 6 (2013).

    Google Scholar 

  20. F. Hu, W.H. Li, J. Zhang, and W. Meng, J. Mater. Sci. Technol. 30, 7 (2014).

    Google Scholar 

  21. A.G. MacDiarmid, R.J. Mammone, R.B. Kaner, S.J. Porter, R. Pethig, A.J. Heeger, and D.R. Rosseinsky, Philos. T. R. Soc. A. 314, 13 (1985).

    Article  Google Scholar 

  22. A.G. MacDiarmid, Angewandte Chemie-international Edition 40, 10 (2001).

    Article  Google Scholar 

  23. H. Xu, J.L. Zhang, Y. Chen, H.L. Lu, and J.X. Zhuang, J. Solid State Electr. 18, 7 (2014).

    Google Scholar 

  24. H. Xu, J.L. Li, Z.J. Peng, J.X. Zhuang, and J.L. Zhang, Electrochim. Acta 90, 7 (2013).

    Google Scholar 

  25. H. Xu, J.L. Zhang, Y. Chen, H.L. Lu, and J.X. Zhuang, RSC Adv. 4, 9 (2014).

    Google Scholar 

  26. H. Xu, J.X. Wu, C.L. Li, J.L. Zhang, and J.Y. Liu, Electrochim. Acta 165, 8 (2015).

    Article  Google Scholar 

  27. F. He, Zh.B. Hu, K.Y. Liu, H.J. Gao, Sh.R. Zhang, H.T. Liu, and Q.L. Xie, J. Solid State Electr. 19, 11 (2015).

    Article  Google Scholar 

  28. G.C. Li and Z.K. Zhang, Macromolecules 37, 3 (2004).

    Google Scholar 

  29. V.S. Jamadade, D.S. Dhawale, and C.D. Lokhande, Synth. Met. 160, 6 (2010).

    Article  Google Scholar 

  30. H.P. Cong, X.C. Ren, P. Wang, and S.H. Yu, Energy Environ. Sci. 6, 7 (2013).

    Article  Google Scholar 

  31. Y.H. Kim, C. Foster, J. Chiang, and A.J. Heeger, Synth. Met. 29, 6 (1989).

    Google Scholar 

  32. H.L. Wang, Q.L. Hao, X.F. Xia, Z.J. Wang, J. Tian, J.H. Zhu, C. Tang, and X. Wang, Adv. Mater. 148–149, 4 (2011).

    Google Scholar 

  33. M. Baibarac, I. Baltog, C. Godon, S. Lefrant, and O. Chauvet, Carbon 42, 10 (2004).

    Article  Google Scholar 

  34. T.M. Wu, Y.W. Lin, and C.S. Liao, Carbon 43, 7 (2005).

    Google Scholar 

  35. X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E.S.W. Kong, H. Wei, and Y. Zhang, J. Mater. Chem. 22, 8 (2012).

    Google Scholar 

  36. S. Ameen, M.S. Akhtar, and H.S. Shin, Sensor. Actuat. B-Chem. 173, 7 (2012).

    Article  Google Scholar 

  37. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  38. M. Cochet, G. Louarn, S. Quillard, J.P. Buisson, and S. Lefrant, J. Raman Spectrosc. 31, 9 (2000).

    Google Scholar 

  39. S. Dhibar and C.K. Das, Ind. Eng. Chem. Res. 53, 14 (2014).

    Google Scholar 

  40. Kh Ghanbari and M. Moloudi, Anal. Biochem. 512, 12 (2016).

    Article  Google Scholar 

  41. C. Yang and C. Chen, Synth. Met. 153, 4 (2005).

    Google Scholar 

  42. Y. Ma, C.W. Tai, R. Younesi, T. Gustafsson, J.Y. Lee, and K. Edstrom, Chem. Mater. 27, 12 (2015).

    Google Scholar 

  43. Y. Ma, C.W. Tai, T. Gustafsson, and K. Edström, Chemsuschem 8, 9 (2015).

    Google Scholar 

  44. Y. Li, X. Zhao, Q. Xu, Q. Zhang, and D. Chen, Langmuir 27, 6 (2011).

    Google Scholar 

  45. Y.G. Wang, H.Q. Li, and Y.Y. Xia, Adv. Mater. 18, 5 (2006).

    Google Scholar 

  46. J.M. Ko and K.M. Kim, Mater. Chem. Phys. 114, 5 (2009).

    Article  Google Scholar 

  47. X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, N.E. Shi, Q.L. Fan, and W. Huang, Adv. Funct. Mater. 21, 8 (2011).

    Google Scholar 

  48. W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, and H.N. Alshareef, Nano Lett. 11, 8 (2011).

    Article  Google Scholar 

  49. V. Khomenko, E. Frackowiak, and F. Beguin, Electrochim. Acta 50, 8 (2005).

    Google Scholar 

  50. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, and Z.N. Gu, Electrochem. Commun. 10, 4 (2008).

    Google Scholar 

  51. X.J. Li, W. Xing, J. Zhou, G.Q. Wang, S.P. Zhuo, Z.F. Yan, Q.Z. Xue, and S.Z. Qiao, Chem. Eur. J. 20, 7 (2014).

    Google Scholar 

  52. A. Khosrozadeh, M. Xing, and Q. Wang, Appl. Energy 153, 7 (2015).

    Article  Google Scholar 

  53. Q. Wang, Y. Huang, J. Miao, Y. Zhao, W. Zhang, and Y. Wang, J. Am. Ceram. Soc. 96, 7 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Xu or Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Tang, J., Chen, Y. et al. Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors. J. Electron. Mater. 46, 6150–6157 (2017). https://doi.org/10.1007/s11664-017-5638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5638-y

Keywords

Navigation