Skip to main content

Advertisement

Log in

ZnO–CuO Nanocomposites with Improved Photocatalytic Activity for Environmental and Energy Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A hydrothermal technique has been applied to synthesize ZnO–CuO nanocomposites that show very high photocatalytic efficiency under specific conditions. The structural, optical, and molecular vibrational properties of the nanocomposite samples were characterized by x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), photoluminescence, ultraviolet–visible (UV–Vis) spectroscopy, and Raman spectroscopy. High-resolution SEM and Rietveld analysis of the XRD data confirm the nanocomposite structure of ZnO–CuO with different ratios of ZnO and CuO phase contents. Raman spectra of the nanocomposites consist of optical vibrational modes of both ZnO and CuO. The unique photoluminescence spectra exhibited characteristic peaks in the visible range, confirming enhanced absorbance in the visible region of the solar spectrum. The photocatalytic activity of the synthesized samples was studied using degradation of methylene blue dye under UV–Vis illumination, revealing photocatalytic efficiency of 56% for the best nanocomposite sample. We also have studied the growth mechanism of the nanocomposite samples, the role of the nanocomposite as a photocatalytic material for wastewater decontamination based on its unique band structure, and the efficiency of the nanocomposite catalysts under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  2. A.L. Linsebigler, G.Q. Lu, and J.T. Yates, Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  3. S.C. Liao, H.F. Lin, S.W. Hung, and C.T. Hu, J. Vac. Sci. Technol. B 24, 1332 (2006).

    Article  Google Scholar 

  4. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen, Nature 440, 295 (2006).

    Article  CAS  Google Scholar 

  5. D.R. Rolison, Science 299, 1698 (2003).

    Article  CAS  Google Scholar 

  6. C.H. Ye, Y. Bando, G.Z. Shen, and D. Golberg, J. Phys. Chem. B 110, 15146 (2006).

    Article  CAS  Google Scholar 

  7. L.R. Zheng, Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, and J.F. Zhu, Inorg. Chem. 48, 1819 (2009).

    Article  CAS  Google Scholar 

  8. A. Hameed, T. Montini, V. Gombaca, and P. Fornasiero, Photochem. Photobiol. Sci. 8, 677 (2009).

    Article  CAS  Google Scholar 

  9. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A. Chem. 85, 247 (1995).

    Article  CAS  Google Scholar 

  10. G. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, and K.A. Gray, J. Phys. Chem. C 112, 19040 (2008).

    Article  CAS  Google Scholar 

  11. H. Morkoc and Ü. ÖzgÜr, General Properties of ZnO. Zinc Oxide: Fundamentals, Materials and Device Technology (Weinheim: Wiley-VCH Verlag, 2009), pp. 1–76.

    Google Scholar 

  12. P. Brüesch, Phonons: Theory and Experiments I: Lattice Dynamics and Models of Interatomic ForcesSpringer Series in Solid-State Sciences, (Berlin: Springer, 1982), pp. 1–100.

    Google Scholar 

  13. J. Chrzanowski and J. Irwin, Solid State Commun. 70, 11 (1989).

    Article  CAS  Google Scholar 

  14. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (London: Oxford University Press, 1957), pp. 1–80.

    Google Scholar 

  15. M. Rajalakshmi, A.K. Arora, S. Bendre, and B.S. Mahamuni, J. Appl. Phys. 87, 2445 (2000).

    Article  CAS  Google Scholar 

  16. K. Olbrychski, R. Kollodziejski, M. Suffczynski, and H. Kunert, J. Phys. France 36, 985 (1975).

    Article  CAS  Google Scholar 

  17. J. Xu, W. Ji, Z. Shen, W. Li, S. Tang, X. Ye, D. Jia, and X. Xin, Raman Spectrosc. 30, 413 (1999).

    Article  CAS  Google Scholar 

  18. F.K. Shan, G.X. Liu, Z.F. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, and Y.S. Yu, J. Korean Phys. Soc. 459, 771 (2004).

    Google Scholar 

  19. A. Bhaumik, A. Haque, P. Karnati, M.F.N. Taufique, R. Patel, and K. Ghosh, Thin Solid Films 572, 126 (2014).

    Article  CAS  Google Scholar 

  20. Y.M. Sun, Ph.D. Thesis, University of Science and Technology of China, July 2000.

  21. P.A. Korzhavyi and B. Johansson, Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation. Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden), ISSN 1404-0344.

  22. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996).

    Article  CAS  Google Scholar 

  23. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Article  CAS  Google Scholar 

  24. B. Balamurugan, B.R. Mehta, D.K. Avasthi, F. Singh, A.K. Arora, M. Rajalakshmi, G. Raghavan, A.K. Tyagi, and S.M. Shivaprasad, J. Appl. Phys. 92, 3304 (2002).

    Article  CAS  Google Scholar 

  25. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  CAS  Google Scholar 

  26. M. Outokesh, S.J. Hosseinpour, T. Ahmadi, S. Mousav, S. Sadjadi, and W. Soltanian, Ind. Eng. Chem. Res. 50, 3540 (2011).

    Article  CAS  Google Scholar 

  27. S. Li, H. Zhang, Y. Ji, and D. Yang, Nanotechnology 15, 1428 (2004).

    Article  CAS  Google Scholar 

  28. L.G. Sillén, A.E. Martell, and J.B. Martell, Stability constants of metal–ion complexes, 2nd ed. (London: The Chemical Society, Burlington House, 1964).

    Google Scholar 

  29. J.F. Banfield, S.A. Welch, H. Zhang, T. Ebert, and R.L. Penn, Science 289, 751 (2000).

    Article  CAS  Google Scholar 

  30. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen, Mater. Sci. Eng. C 33, 91 (2013).

    Article  CAS  Google Scholar 

  31. N. Daneshvar, D. Salari, and A.R. Khataee, J. Photochem. Photobiol. A Chem 162, 317 (2004).

    Article  CAS  Google Scholar 

  32. T. Chang, Z. Li, G. Yun, Y. Jia, and H. Yang, Nano-Micro Lett. 5, 163 (2013).

    Article  Google Scholar 

  33. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, and X. Qu, J. Hazard. Mater. 176, 807 (2010).

    Article  CAS  Google Scholar 

  34. P. Sathishkumar, R. Sweena, J.J. Wu, and S. Anandan, Chem. Eng. J. 171, 136 (2011).

    Article  CAS  Google Scholar 

  35. P. Karnati, A. Haque, M.F.N. Taufique, and K. Ghosh, Nanomaterials 8, 62 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

M.F.N.T. and A.H. contributed equally to this work as first authors. This research was funded by the National Science Foundation (Grant Nos. DMR-1126375 and DMR-0907037). The authors would also like to acknowledge Robert Mayanovic and Ridwan Sakidja for useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. N. Taufique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taufique, M.F.N., Haque, A., Karnati, P. et al. ZnO–CuO Nanocomposites with Improved Photocatalytic Activity for Environmental and Energy Applications. J. Electron. Mater. 47, 6731–6745 (2018). https://doi.org/10.1007/s11664-018-6582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6582-1

Keywords

Navigation