Skip to main content
Log in

Study of Interfacial Reactions Between Lead-Free Solders and Cu-xZn Alloys

  • TMS2018 Phase Stability in Electronic Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The solid/liquid reaction couple technique was employed to investigate the interfacial reactions between Cu-xZn (x = 0 wt.%, 5 wt.%, 15 wt.%, 30 wt.%, 40 wt.%) alloys and lead-free solders Sn, Sn-3.0Ag-0.5Cu (SAC, in wt.%), and Sn-9Zn (SZ, in wt.%) alloys at 240°C, 270°C, and 300°C for 0.5 h to 100 h. (Cu,Zn)6Sn5 and (Cu,Zn)3Sn phases were formed in the Sn/Cu-xZn (x = 5 wt.%, 15 wt.%, 30 wt.%) reaction couples, but with increasing reaction temperature and time, (Cu,Sn)Zn phase was formed, replacing (Cu,Zn)3Sn phase. Metastable T phase and (Cu,Sn)Zn phase were formed in the Sn/Cu-40Zn reaction couple at 300°C. (Cu,Zn)6Sn5 and (Cu,Zn)3Sn phases formed in the SAC/Cu-xZn (x = 5 wt.%, 15 wt.%) reaction couples. Furthermore, (Cu,Zn)6Sn5 and (Cu,Zn)Sn phases were observed when the SAC solders reacted with Cu-30Zn and Cu-40Zn alloys. T phase and (Cu,Sn)Zn phase were formed in the SAC/Cu-40Zn reaction couple reacted at 300°C for 100 h. (Cu,Sn)Zn5 and (Cu,Sn)5Zn8 phases were formed in the SZ/Cu-Zn reaction couples at 240°C. However, with increasing reaction time and temperature, only (Cu,Sn)5Zn8 phase was detected. Therefore, it can be concluded that the intermetallic compound (IMC) formation was sensitive to both the reaction temperature and the Zn content in the Cu-Zn alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Official Journal of the European Union, 13.2. 2003; L37/19-L37/23

  2. B.J. Lee, N.M. Hwang, and H.M. Lee, Acta Mater. 45, 1867 (1997).

    Article  Google Scholar 

  3. D.Q. Yu, H.P. Xie, and L. Wang, J. Alloys Compd. 385, 119 (2004).

    Article  Google Scholar 

  4. Y.W. Yen and W.K. Liu, J. Mater. Res. 22, 2633 (2007).

    Google Scholar 

  5. X. Wei, H. Huanf, L. Zhou, M. Zhang, and X. Liu, Mater. Lett. 61, 655 (2007).

    Article  Google Scholar 

  6. C.C. Jao, Y.W. Yen, and C. Lee, Intermetallics 16, 463 (2008).

    Article  Google Scholar 

  7. L.R. Garcia, W.R. Oso´rio, L.C. Peixoto, and A. Garcia, J. Electron. Mater. 38, 2405 (2009).

    Article  Google Scholar 

  8. W.K. Liou and Y.W. Yen, Intermetallics 17, 72 (2009).

    Article  Google Scholar 

  9. W.X. Chen, S.B. Xue, H. Wang, J.X. Wang, Z.J. Han, and L.L. Gao, J. Mater. Sci. 2, 461 (2010).

    Google Scholar 

  10. Y.W. Yen, P.H. Tsai, Y.K. Fang, S.C. Lo, Y.P. Hsieh, and C. Lee, J. Alloys Compd. 503, 25 (2010).

    Article  Google Scholar 

  11. Y.W. Yen, D.W. Liaw, K.D. Chen, and H. Chen, J. Electron. Mater. 29, 2412 (2010).

    Article  Google Scholar 

  12. Y.W. Yen, P.H. Tsai, Y.K. Fang, B.J. Chen, and C. Lee, J. Alloys Compd. 517, 111 (2012).

    Article  Google Scholar 

  13. Y.T. Wang, C.J. Ho, and H.L. Tsai, Nano/Micro Eng. Mol. Sys. 8, 1038 (2013).

    Google Scholar 

  14. Y.W. Yen, Y.P. Hsieh, C.C. Jao, C.W. Chiu, and Y.S. Li, J. Electron. Mater. 43, 187 (2014).

    Article  Google Scholar 

  15. C.E. Ho, L.C. Shiau, and C.R. Kao, J. Electron. Mater. 31, 1264 (2002).

    Article  Google Scholar 

  16. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    Article  Google Scholar 

  17. F. Zhang, M. Li, C.C. Chum, and Z.C. Shao, J. Electron. Mater. 32, 123 (2003).

    Article  Google Scholar 

  18. K.S. Kim, J.M. Yang, C.H. Yu, I.O. Jung, and H.H. Kim, J. Alloys Compd. 379, 314 (2004).

    Article  Google Scholar 

  19. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci.: Mater. Electron. 18, 155 (2006).

    Google Scholar 

  20. Y.W. Yen and W.K. Liou, J. Mater. Res. 22, 2663 (2007).

    Article  Google Scholar 

  21. Y.W. Yen, W.T. Chou, H.C. Chen, W.K. Liou, and C. Lee, Int. J. Mater. Res. 99, 1256 (2008).

    Article  Google Scholar 

  22. Y.W. Yen, C.Y. Lee, M.H. Kuo, K.S. Chao, and K.D. Chen, Int. J. Mater. Res. 100, 672 (2009).

    Article  Google Scholar 

  23. S.K. Lin, K.D. Chen, H. Chen, W.K. Liou, and Y.W. Yen, J. Mater. Res. 25, 2278 (2010).

    Article  Google Scholar 

  24. C.F. Tseng, T.K. Lee, G. Ramakrishna, K.C. Liu, and J.G. Duh, Mater. Lett. 65, 3216 (2011).

    Article  Google Scholar 

  25. A. Kumar and Z. Chen, J. Electron. Mater. 40, 213 (2011).

    Article  Google Scholar 

  26. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, J. Appl. Phys. 97, 024508-1-024508-8 (2005)

  27. Y.K. Jee, Y.H. Ko, and J. Yu, J. Mater. Res. 22, 1879 (2007).

    Article  Google Scholar 

  28. A. Rahn, The Basics of Soldering (New York: Wiley, 1993).

    Google Scholar 

  29. C.Y. Oh, H. Roh, Y.M. Kim, J.S. Lee, H.Y. Cho, and Y. Kim, J. Mater. Res. 24, 297 (2009).

    Article  Google Scholar 

  30. C.Y. Yu, K.J. Wang, and J.G. Duh, J. Electron. Mater. 39, 230 (2010).

    Article  Google Scholar 

  31. M.G. Cho, S.K. Seo, and H.M. Lee, J. Alloys Compd. 474, 510 (2009).

    Article  Google Scholar 

  32. P. Harris, Solder. Surf. Mount Tech. 11, 46 (1999).

    Article  Google Scholar 

  33. D. Li, O. Franke, S. Fürtauer, D. Cupid, and H. Flandorfer, Intermetallics 34, 148 (2013).

    Article  Google Scholar 

  34. C.Y. Chou and S.W. Chen, Acta Mater. 54, 2393 (2006).

    Article  Google Scholar 

  35. A.P. Miodownik, in Phase Diagrams of Binary Copper Alloys, ed. by P.R. Subramanian, D.J. Chakrabarti, D.E. Laughlin (ASM International, Materials Park, Ohio, 1994), pp. 487–496

  36. W.K. Liou and Y.W. Yen, J. Electron. Mater. 18, 2222 (2009).

    Article  Google Scholar 

  37. Y.W. Yen, W.K. Liou, W.C. Chen, and C.W. Chiu, J. Alloys Compd. 574, 490 (2013).

    Article  Google Scholar 

  38. C.Y. Yu and J.G. Duh, J. Mater. Sci. 47, 6467 (2012).

    Article  Google Scholar 

  39. C.C. Chen, S.W. Chen, and C.Y. Kao, J. Electron. Mater. 35, 922 (2006).

    Article  Google Scholar 

  40. C.C. Chen, S.W. Chen, and C.H. Horng, J. Mater. Res. 23, 2743 (2008).

    Article  Google Scholar 

  41. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Materials Park, OH: ASM International, 1973), p. 795.

    Google Scholar 

  42. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng., R 49, 1 (2005).

    Article  Google Scholar 

  43. C.M. Chen and C.H. Chen, J. Electron. Mater. 36, 1363 (2007).

    Article  Google Scholar 

  44. S.C. Yang, C.E. Ho, C.W. Chang, and C.R. Kao, Int. J. Mater. Res. 21, 2436 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Ministry of Science and Technology, Taiwan, R.O.C. (Grant No. MOST 104-2628-E-011-001-MY3) and the Ministry of Education (MoE) Top University Projects. The authors are also grateful for help from Mr. S.C. Laiw, who works at National Taiwan University of Science and Technology, for SEM–EDS operation, and Mr. C.Y. Kao, who works at National Taiwan University, for carrying out the EPMA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee-Wen Yen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yen, YW., Yu, W., Wang, CH. et al. Study of Interfacial Reactions Between Lead-Free Solders and Cu-xZn Alloys. J. Electron. Mater. 48, 170–181 (2019). https://doi.org/10.1007/s11664-018-6577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6577-y

Keywords

Navigation