Skip to main content

Advertisement

Log in

Effect of Nano-Ce-Doped TiO2 on AC Conductivity and DC Conductivity Modeling Studies of Poly (n-Butyl Methacrylate)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Among the unique properties of polymer nanocomposites, electrical conductivity deserves a prominent place due to their wide applications in conducting adhesive, electromagnetic shielding and sensors. The present work focuses on the effect of cerium-doped titanium dioxide (Ce-TiO2) nanoparticles on the conductivity studies of poly (n-butyl methacrylate), or PBMA, nanocomposites at different temperatures. The frequency-dependent alternating current (AC) electrical conductivity of PBMA/Ce-TiO2 nanocomposites has been found to increase with increase in temperature and the concentration of Ce-TiO2 nanoparticles. The activation energy calculated from the AC electrical conductivity has been found to decrease with frequency and increasing temperatures. The frequency exponent factor also showed a decrease with frequency, indicating the hopping conduction in the nanocomposites. The maximum AC conductivity has been observed for the composites with 7 wt.% sample. The direct current (DC) conductivity of PBMA/Ce-TiO2 composites was also enhanced with the addition of Ce-TiO2 nanoparticles. Experimental and theoretical investigations based on Scarisbrick, Bueche, McCullough and Mamunya modeling were undertaken to understand the observed DC conductivity differences induced by the addition of Ce-doped TiO2 nanoparticles to PBMA matrix. The experimental conductivity showed good agreement with the theoretical conductivity observed using the Mamunya model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.Q. Dat, N.T. Ha, and D.Q. Hung, J. Electron. Mater. 46, 3707 (2017).

    Article  CAS  Google Scholar 

  2. S. Zolghadr, S. Kimiagar, and K. Khojier, J. Electron. Mater. 46, 6834 (2017).

    Article  CAS  Google Scholar 

  3. V.C. Jasna and M.T. Ramesan, J. Mater. Sci. 53, 8250 (2018).

    Article  CAS  Google Scholar 

  4. M.H. Al-Saleh and S.A. Jawad, J. Electron. Mater. 45, 3532 (2016).

    Article  CAS  Google Scholar 

  5. G.M. Joshi and K. Deshmukh, J. Electron. Mater. 43, 1161 (2014).

    Article  CAS  Google Scholar 

  6. M.T. Ramesan and K. Surya, Polym. Compos. 38, 66 (2017).

    Article  Google Scholar 

  7. R. Taherian, J. Solid State Sci. Technol. 3, 26 (2014).

    Article  Google Scholar 

  8. S. Chaudhari, T. Shaikh, and P. Pandey, Int. J. Eng. Res. Appl. 3, 1386 (2013).

    Google Scholar 

  9. J.C. Aphesteguy and S.E. Jacobo, J. Mater. Sci. 42, 7062 (2007).

    Article  CAS  Google Scholar 

  10. A. Nihmath and M.T. Ramesan, J. Inorg. Organomet. Polym. 27, 481 (2017).

    Article  CAS  Google Scholar 

  11. V. Stengle, S. Bakardjieva, and N. Murafa, Mater. Chem. Phys. 114, 217 (2009).

    Article  Google Scholar 

  12. S.C. Nagaraju, A.S. Roy, and G. Ramgopal, Measurement 60, 214 (2015).

    Article  Google Scholar 

  13. A.A. Haroun and A.M. Youssef, Synth. Met. 161, 2063 (2011).

    Article  CAS  Google Scholar 

  14. M.T. Ramesan, C. Siji, G.K. Prasad, B.K. Bahuleyan, and M.A. Al-Maghrabi, J. Polym. Environ. 26, 2983 (2018).

    Article  CAS  Google Scholar 

  15. M.H. Kim, D.H. Bae, H.J. Choi, and Y. Seo, Polymer 119, 40 (2017).

    Article  Google Scholar 

  16. H. Yilmaz, H. Zengin, and H.I. Unal, J. Mater. Sci. 47, 5276 (2012).

    Article  CAS  Google Scholar 

  17. U. Ali, K. Juhanni, B. Abd, and N.A. Buang, Polym. Rev. 55, 678 (2015).

    Article  CAS  Google Scholar 

  18. K. Suhailath, M.T. Ramesan, B. Naufal, P. Periyat, V.C. Jasna, and P. Jayakrishnan, Adv. Polym. Technol. 37,1114 (2016).

    Article  Google Scholar 

  19. T. Sampreeth, M.A. Al-Maghrabi, B. Bahuleyan, and M.T. Ramesan, J. Mater. Sci. 53, 591 (2018).

    Article  CAS  Google Scholar 

  20. A.S. Roy, K.R. Anilkumar, and M.V.N.A. Prasad, J. Appl. Polym. Sci. 121, 675 (2011).

    Article  CAS  Google Scholar 

  21. M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, and G. Mathew, J. Mater. Sci. - Mater. Electron. 29, 1992 (2018).

    Article  CAS  Google Scholar 

  22. P.W. Chen and D.D.L. Chung, J. Electron. Mater. 24, 47 (1995).

    Article  CAS  Google Scholar 

  23. P. Jayakrishnan and M.T. Ramesan, Mater. Chem. Phys. 186, 513 (2017).

    Article  CAS  Google Scholar 

  24. K. Suhailath and M.T. Ramesan, J. Mater. Sci. - Mater. Electron. 28, 13797 (2017).

    Article  CAS  Google Scholar 

  25. R. Taherian, M.J. Hadianfard, and A.N. Golikand, J. Appl. Polym. Sci. 128, 1497 (2013).

    CAS  Google Scholar 

  26. X. Wu, S. Qi, J. He, and G. Duan, J. Mater. Sci. 45, 483 (2010).

    Article  CAS  Google Scholar 

  27. C. Lu and Y.W. Mai, J. Mater. Sci. 43, 6012 (2008).

    Article  CAS  Google Scholar 

  28. M.L. Clingerman, E.H. Weber, J.A. King, and K.H. Schulz, J. Appl. Polym. Sci. 88, 2280 (2003).

    Article  CAS  Google Scholar 

  29. M.T. Ramesan, P. Jayakrishnan, T. Sampreeth, and P.P. Pradyumnan, J. Therm. Anal. Calorim. 129, 135 (2017).

    Article  CAS  Google Scholar 

  30. R.M. Scarisbrick, J. Phys. D Appl. Phys. 6, 2098 (1973).

    Article  CAS  Google Scholar 

  31. R.L. McCullough, Compos. Sci. Technol. 22, 3 (1985).

    Article  CAS  Google Scholar 

  32. F. Bueche, J. Appl. Phys. 43, 4837 (1972).

    Article  CAS  Google Scholar 

  33. E.P. Mamunya, V.V. Davidenko, and E.V. Lebedev, Compos. Interfaces 4, 169 (1996).

    Article  Google Scholar 

  34. F. Lux, J. Mater. Sci. 28, 285 (1993).

    Article  CAS  Google Scholar 

  35. P. Jayakrishnan and M.T. Ramesan, Polym. Compos. (2016). https://doi.org/10.1002/pc.24271.

    Article  Google Scholar 

  36. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, and K. Ishikawa, J. Mater. Sci. 17, 1610 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. P. P. Pradyumnan, Department of Physics, University of Calicut, for providing the necessary facilities in the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhailath, K., Ramesan, M.T. Effect of Nano-Ce-Doped TiO2 on AC Conductivity and DC Conductivity Modeling Studies of Poly (n-Butyl Methacrylate). J. Electron. Mater. 47, 6484–6493 (2018). https://doi.org/10.1007/s11664-018-6556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6556-3

Keywords

Navigation