Skip to main content
Log in

Electrical conductivity of carbon-polymer composites as a function of carbon content

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical conductivity of carbon particle-filled polymers was measured as a function of carbon content to find a break point of the relationships between the carbon content and the conductivity. The conductivity jumps by as much as ten orders of magnitude at the break point. The critical carbon content corresponding to the break point varies depending on the polymer species and tends to increase with the increase in the surface tension of polymer. In order to explain the dependency of the critical carbon content on the polymer species, a simple equation was derived under some assumptions, the most important of which was that when the interfacial excess energy introduced by carbon particles into the polymer matrix reaches a “universal value”, Δg *, the carbon particles begin to coagulate so as to avoid any further increase of the energy and to form networks which facilitate electrical conduction. The equation well explains the dependency through surface tension, as long as the difference of the surface tensions between the carbon particles and the polymer is not very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Garland, Trans. Met. Soc. AIME 236 (1966) 642.

    Google Scholar 

  2. A. Malliaris and D. T. Turner, J. Appl. Phys. 42 (1972) 614.

    Google Scholar 

  3. F. Buche, ibid. 43 (1972) 4837.

    Google Scholar 

  4. S. M. Aharoni, ibid. 43 (1972) 2463.

    Google Scholar 

  5. R. P. Kusy and D. T. Turner, J. Appl. Polymer Sci. 17 (1973) 1631.

    Google Scholar 

  6. F. Buche, J. Appl. Phys. 44 (1973) 532.

    Google Scholar 

  7. R. M. Sacrisbrick, J. Phys. D. 6 (1973) 2098.

    Google Scholar 

  8. G. E. Pike and C. H. Seager, Phys. Rev. B, 10 (1974) 1421.

    Google Scholar 

  9. C. H. Seager and G. E. Pike, ibid., 10 (1974) 1435.

    Google Scholar 

  10. R. Mukhopadhyay, S. K. De and S. Basu, J. Appl. Polymer Sci. 20 (1976) 2575.

    Google Scholar 

  11. W. F. Verhelst, K. G. Wolthuis, A. Voet, P. Ehrburger and J. B. Donnet, Rubber Chem. Tech. 50 (1977) 735.

    Google Scholar 

  12. A. K. Sircar and T. G. Lamond, ibid. 51 (1978) 126.

    Google Scholar 

  13. R. Matsushita, M. Senna and H. Kuno, J. Mater. Sci. 12 (1977). 509.

    Google Scholar 

  14. R. B. Grekila and T. Y. Tien, J. Amer. Ceram. Soc. 48 (1965) 22.

    Google Scholar 

  15. P. J. Flory, “Principles of Polymer Chemistry”, (Cornell University Press, 1953) Chapter 9.

  16. A. Tanioka, K. Miyasaka and K. Ishikawa, J. Polymer. Sci., Polymer. Phys. Ed. to be published.

  17. Y. Kitazaki and T. Hata, J. Adhesion Soc. Japan, 8 (1973) 131.

    Google Scholar 

  18. K. L. Johnson, K. Kendall and A. D. Robert, Proc. Roy. Soc. London 324 (1971) 301.

    Google Scholar 

  19. M. L. Williams, R. F. Landel and J. Ferry, J. Amer. Chem. Soc. 77 (1955) 3701.

    Google Scholar 

  20. F. M. Fowkes, Ind. Eng. Chem. 56 (1964) 40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyasaka, K., Watanabe, K., Jojima, E. et al. Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17, 1610–1616 (1982). https://doi.org/10.1007/BF00540785

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540785

Keywords

Navigation