Skip to main content
Log in

Characterization of Molybdenum Oxide Thin Films Grown by Atomic Layer Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Molybdenum oxide (MoO3) thin films have been deposited using plasma-enhanced atomic layer deposition with molybdenum hexacarbonyl (Mo(CO)6) and oxygen plasma. Self-limiting growth was verified at a deposition temperature of 162°C and the growth rate was determined to be 0.76 Å/cycle. It was found that the as-deposited amorphous thin films crystallized into β- or α-MoO3 during annealing temperatures from 300°C to 400°C in air. In addition, the optical bandgap (Eg) of the amorphous MoO3 was estimated to be 4 eV by transmittance spectral analysis. Moreover, metal-insulator–semiconductor capacitors based on p-type (100) silicon substrates were fabricated to investigate the electrical properties of MoO3. It was shown that the MoO3 thin films exhibit a good dielectric performance and that the dielectric constant of the amorphous MoO3 was determined to be about 17. Additionally, a low leakage current of 6.43 × 10−7 A/cm2 at 1 V was detected and the equivalent oxide thickness was calculated to be 10.5 nm. As a result, MoO3 thin films, as a new high-κ gate dielectrics system, might be a good candidate for metal-insulator–semiconductor field-effect transistors based on two-dimensional transition metal dichalcogenides, especially for metal oxide semiconductor field-effect transistors using molybdenum disulfide (MoS2) as channel material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-I. Ogita, S. Iehara, and T. Tomita, Thin Solid Films 430, 161 (2003).

    Article  CAS  Google Scholar 

  2. H. Hu, C.X. Zhu, Y.F. Lu, Y.H. Wu, T. Liew, M.F. Li, B.J. Cho, W.K. Choi, and N. Yakovlev, J. Appl. Phys. 94, 551 (2003).

    Article  CAS  Google Scholar 

  3. M.-S. Kim, Y.-D. Ko, J.-H. Hong, M.-C. Jeong, J.-M. Myoung, and I. Yun, Appl. Surf. Sci. 227, 387 (2004).

    Article  CAS  Google Scholar 

  4. Y.H. Wu, M.Y. Yang, A. Chin, W.J. Chen, and C.M. Kwei, IEEE Electron Device Lett. 21, 341 (2000).

    Article  CAS  Google Scholar 

  5. J.-S. Lee, W.-H. Kim, I.-K. Oh, M.-K. Kim, G. Lee, C.-W. Lee, J. Park, C.L. Matras, W. Noh, and H. Kim, Appl. Surf. Sci. 297, 16 (2014).

    Article  CAS  Google Scholar 

  6. D.A. Buchanan, IBM J. Res. Dev. 43, 245 (1999).

    Article  CAS  Google Scholar 

  7. J.G. Song, J. Park, W. Lee, T.J. Choi, H. Jung, and C.W. Lee, ACS Nano 7, 11333 (2013).

    Article  CAS  Google Scholar 

  8. S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y.W. Jin, S.Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 2, 1011 (2012).

    Article  Google Scholar 

  9. N.A. Chernova, M. Roppolo, A.C. Dillon, and M.S. Whittingham, J. Mater. Chem. 19, 2526 (2009).

    Article  CAS  Google Scholar 

  10. J.N. Yao, K. Hashimoto, and A. Fujishima, Nature 355, 624 (1992).

    Article  CAS  Google Scholar 

  11. J. Yu, S.J. Ippolito, M. Shafiei, D. Dhawan, W. Wlodarski, and K. Kalantar-zadeh, Appl. Phys. Lett. 94, 013504 (2009).

    Article  Google Scholar 

  12. Z. Luo, R. Miao, T.D. Huan, I.M. Mosa, A.S. Poyraz, W. Zhong, J.E. Cloud, D.A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S.L. Sui, Adv. Energy Mater. 6, 1600528 (2016).

    Article  Google Scholar 

  13. Y.H. Lee, X.Q. Zhang, W.J. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J. Tse-Wei Wang, C.S. Chang, L.J. Li, and T.W. Lin, Adv. Mater. 24, 2320 (2012).

    Article  CAS  Google Scholar 

  14. X.L. Wang, Y.J. Gong, G. Shi, W.L. Chow, K. Keyshar, G.L. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B.K. Tay, and P.M. Ajayan, ACS Nano 8, 5125 (2014).

    Article  CAS  Google Scholar 

  15. H. Ohtsuka and Y. Sakurai, Solid State Ion. 144, 59 (2001).

    Article  CAS  Google Scholar 

  16. Y.C. Lin, W. Zhang, J.K. Huang, K.K. Liu, Y.H. Lee, C.T. Liang, C.W. Chu, and L.J. Li, Nanoscale 4, 6637 (2012).

    Article  CAS  Google Scholar 

  17. C. Battaglia, X.T. Yin, M. Zheng, and I.D. Sharp, Nano Lett. 14, 967 (2014).

    Article  CAS  Google Scholar 

  18. A.K. Prasad, P.I. Gouma, D.J. Kubinski, J.H. Visser, R.E. Soltis, and P.J. Schmitz, Thin Solid Films 436, 46 (2003).

    Article  CAS  Google Scholar 

  19. T. Siciliano, A. Tepore, E. Filippo, G. Micocci, and M. Tepore, Mater. Chem. Phys. 114, 687 (2009).

    Article  CAS  Google Scholar 

  20. K. Kalantar-zadeh, J.S. Tang, M.S. Wang, K.L. Wang, and A. Shailos, Nanoscale 2, 429 (2010).

    Article  CAS  Google Scholar 

  21. L. Chibane, M.S. Belkaid, R. Zirmi, and A. Moussi, J. Electron. Mater. 46, 1963 (2017).

    Article  CAS  Google Scholar 

  22. S.Y. Lin, Y.C. Chen, C.M. Wang, P.T. Hsieh, and S.C. Shih, Appl. Surf. Sci. 255, 3868 (2009).

    Article  CAS  Google Scholar 

  23. R.M. Guerrero, J.R.V. Garcia, V. Santes, and E. Gomez, J. Alloys. Compd. 701, 434 (2007).

    Google Scholar 

  24. M.F. Al-Kuhaili, S.M.A. Durrani, and I.A. Bakhtiari, Appl. Phys. A 98, 609 (2010).

    Article  CAS  Google Scholar 

  25. A. Bertuch, G. Sundaram, M. Saly, D. Moser, and R. Kanjolia, J. Vac. Sci. Technol. A32, 01A119 (2014).

    Article  Google Scholar 

  26. M. Diskus, O. Nilsen, and H. Fjellvag, J. Mater. Chem. 21, 705 (2011).

    Article  CAS  Google Scholar 

  27. M. Diskus, O. Nilsen, H. Fjellvåg, S. Diplas, P. Beato, C. Harvey, E. van Schrojenstein Lantman, and B.M. Weckhuysen, J. Vac. Sci. Technol. A30, 01A107 (2012).

    Article  Google Scholar 

  28. H. Kim, H.-B.-R. Lee, and W.-J. Maeng, Thin Solid Films 517, 2563 (2009).

    Article  CAS  Google Scholar 

  29. H. Kim, Thin Solid Films 519, 6639 (2011).

    Article  CAS  Google Scholar 

  30. Y.C. Tseng, A.U. Mane, J.W. Elam, and S.B. Darling, Sol. Energy Mater. Sol. Cells 99, 235 (2012).

    Article  CAS  Google Scholar 

  31. D.D. Yao, J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, and K. Kalantar-zadeh, Cryst. Growth Des. 12, 1865 (2012).

    Article  CAS  Google Scholar 

  32. J.Z. Ou, J.L. Campbell, D. Yao, W. Wlodarski, and K. Kalantar-zadeh, J. Phys. Chem. C 115, 10757 (2011).

    Article  CAS  Google Scholar 

  33. W.K. Henson, K.Z. Ahmed, E.M. Vogel, J.R. Hauser, J.J. Wortman, R.D. Venables, M. Xu, and D. Venables, IEEE Electron Device Lett. 20, 179 (1999).

    Article  CAS  Google Scholar 

  34. J.Y. Dai, P.F. Lee, K.H. Wong, H.L.W. Chan, and C.L. Choy, J. Appl. Phys. 94, 912 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by the National Nature Science Foundation of China under Contract 51572043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Ren, Y., Qian, L. et al. Characterization of Molybdenum Oxide Thin Films Grown by Atomic Layer Deposition. J. Electron. Mater. 47, 6709–6715 (2018). https://doi.org/10.1007/s11664-018-6555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6555-4

Keywords

Navigation