Skip to main content

Advertisement

Log in

Impact of Carbon Codoping on Generation and Dissociation of Boron–Oxygen Defects in Czochralski Silicon

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

It has been previously reported that boron–oxygen (B–O) defects in Czochralski (CZ) silicon can be effectively suppressed by carbon codoping. In this work, the kinetics of B–O defect generation and dissociation in carbon-codoped CZ (CCZ) silicon has been investigated. It was found that the activation energy for B–O defect generation in CCZ silicon is 0.56 eV, much larger than that in conventional CZ silicon. However, the activation energy for B–O defect dissociation in CCZ silicon is almost the same as that in conventional CZ silicon, viz. ∼ 1.37 eV. Moreover, the binding energy of B–O defects in both CZ and CCZ silicon is determined to be 0.93 eV. Based on these results, it is believed that carbon atoms in CCZ silicon participate in formation of B–O latent centers before transforming into recombination-active centers under illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sterk, K.A. Münzer, and S.W. Glunz, in Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997).

  2. F. Wolny, T. Weber, M. Müller, and G. Fischer, Energy Procedia 38, 523 (2013).

    Article  Google Scholar 

  3. F. Fertig, K. Krauß, and S. Rein, Phys. Status Solidi (RRL) Rapid Res. Lett. 9, 41 (2015).

    Article  Google Scholar 

  4. K. Bothe and J. Schmidt, J. Appl. Phys. 99, 013701 (2006).

    Article  Google Scholar 

  5. S.W. Glunz, S. Rein, J.Y. Lee, and W. Warta, J. Appl. Phys. 90, 2397 (2001).

    Article  Google Scholar 

  6. H. Fischer and W. Pschunder, in Proceedings of the Tenth IEEE Photovoltaic Specialists Conference (1973), p. 404.

  7. J. Lindroos and H. Savin, Sol. Energy Mater. Sol. Cells 147, 115 (2016).

    Article  Google Scholar 

  8. T. Niewelt, J. Schön, W. Warta, S.W. Glunz, and M.C. Schubert, IEEE J. Photovolt. 7, 383 (2017).

    Article  Google Scholar 

  9. V.V. Voronkov, R. Falster, K. Bothe, B. Lim, and J. Schmidt, J. Appl. Phys. 110, 063515 (2011).

    Article  Google Scholar 

  10. J. Schmidt, A.G. Aberle, and R. Hezel, in Photovoltaic Specialists Conference (1997), pp. 13–18.

  11. S. W. Glunz, S. Rein, W. Warta, J. Knobloch, and W. Wettling, in Proceedings of the 2nd World Conference on Photovoltaic Energy Conversion (1998), pp. 1343.

  12. X. Yu, P. Wang, and D. Yang, Appl. Phys. Lett. 97, 162107 (2010).

    Article  Google Scholar 

  13. J. Schmidt and K. Bothe, Phys. Rev. B 69, 024107 (2004).

    Article  Google Scholar 

  14. J. Schmidt, K. Bothe, and R. Hezel, in Conference Record of the Twenty-Ninth IEEE on Photovoltaic Specialists Conference (2002), pp. 178–181.

  15. S.W. Glunz, E. Schaffer, S. Rein, K. Bothe, and J. Schmidt, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (2003), pp. 919–922.

  16. K. Bothe, R. Hezel, and J. Schmidt, in Solid State Phenomena (2004), pp. 223–228.

  17. R.S. Crandall, J. Appl. Phys. 108, 103713 (2010).

    Article  Google Scholar 

  18. S. Rein, T. Rehrl, W. Warta, S.W. Glunz, and G. Willeke, in Proceedings of the 17th European Photovoltaic Solar Energy Conference (2001), p. 1555.

  19. S. Rein and S.W. Glunz, Appl. Phys. Lett. 82, 1054 (2003).

    Article  Google Scholar 

  20. T. Niewelt, S. Mägdefessel, and M.C. Schubert, J. Appl. Phys. 120, 085705 (2016).

    Article  Google Scholar 

  21. K. Bothe, R. Sinton, and J. Schmidt, Prog. Photovolt. Res. Appl. 13, 287 (2005).

    Article  Google Scholar 

  22. D. Macdonald, F. Rougieux, A. Cuevas, B. Lim, J. Schmidt, M. Di Sabatino, and L.J. Geerligs, J. Appl. Phys. 105, 093704 (2009).

    Article  Google Scholar 

  23. B. Lim, F. Rougieux, D. Macdonald, K. Bothe, and J. Schmidt, J. Appl. Phys. 108, 103722 (2010).

    Article  Google Scholar 

  24. J. Geilker, W. Kwapil, and S. Rein, J. Appl. Phys. 109, 053718 (2011).

    Article  Google Scholar 

  25. V.V. Voronkov and R. Falster, J. Appl. Phys. 107, 053509 (2010).

    Article  Google Scholar 

  26. C. Möller and K. Lauer, Phys. Status Solidi (RRL) Rapid Res. Lett. 7, 461 (2013).

    Article  Google Scholar 

  27. K. Lauer, C. Möller, D. Schulze, C. Ahrens, and J. Vanhellemont, in Gettering and Defect Engineering in Semiconductor Technology 2015 (GADEST 2015) (2016), pp. 90–95.

  28. K. Lauer, C. Möller, C. Teßmann, D. Schulze, and N.V. Abrosimov, Phys. Status Solidi (c) 14, 1600033 (2017).

  29. P. Chen, X. Yu, X. Liu, X. Chen, Y. Wu, and D. Yang, Appl. Phys. Lett. 102, 082107 (2013).

    Article  Google Scholar 

  30. P. Chen, X. Yu, Y. Wu, J. Zhao, and D. Yang, J. Appl. Phys. 112, 084509 (2012).

    Article  Google Scholar 

  31. X. Yu, P. Chen, X. Chen, Y. Liu, and D. Yang, AIP Adv. 5, 077154 (2015).

    Article  Google Scholar 

  32. J. Adey, R. Jones, D.W. Palmer, P.R. Briddon, and S. Öberg, Phys. Rev. Lett. 93, 055504 (2004).

    Article  Google Scholar 

  33. S.W. Glunz, S. Rein, J. Knobloch, W. Wettling, and T. Abe, Prog. Photovolt. Res. Appl. 7, 463 (1999).

    Article  Google Scholar 

  34. D. Yang, P. Wang, X. Yu, and D. Que, J. Cryst. Growth 362, 140 (2013).

    Article  Google Scholar 

  35. X. Yu, P. Wang, P. Chen, X. Li, and D. Yang, Appl. Phys. Lett. 97, 051903 (2010).

    Article  Google Scholar 

  36. A. Herguth, G. Schubert, M. Kaes, and G. Hahn, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (2006), pp. 940–943.

  37. A. Herguth and G. Hahn, J. Appl. Phys. 108, 114509 (2010).

    Article  Google Scholar 

  38. B.J. Hallam, S.R. Wenham, P.G. Hamer, M.D. Abbott, A. Sugianto, C.E. Chan, A.M. Wenham, M.G. Eadie, and G. Xu, Energy Procedia 38, 561 (2013).

    Article  Google Scholar 

  39. B.J. Hallam, P.G. Hamer, S. Wang, L. Song, N. Nampalli, M.D. Abbott, C.E. Chan, D. Lu, A.M. Wenham, and L. Mai, Energy Procedia 77, 799 (2015).

    Article  Google Scholar 

  40. S. Rein, S. Diez, R. Falster, and S.W. Glunz, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 2003 (IEEE, 2003), pp. 1048–1052.

  41. S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications, Vol. 489 (Berlin: Springer, 2005), p. 188.

    Google Scholar 

  42. Y. Wu, X. Yu, H. He, P. Chen, and D. Yang, Appl. Phys. Lett. 106, 102105 (2015).

    Article  Google Scholar 

  43. R.C. Newman, Rep. Prog. Phys. 45, 1163 (1982).

    Article  Google Scholar 

  44. R.A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).

    Article  Google Scholar 

  45. R.A. Sinton, A. Cuevas, and M. Stuckings, in Conference Record of the Twenty Fifth IEEE on Photovoltaic Specialists Conference (1996), pp. 457–460.

  46. A. Herguth, G. Schubert, M. Käs, and G. Hahn, Prog. Photovolt. Res. Appl. 16, 135 (2008).

    Article  Google Scholar 

  47. B. Lim, K. Bothe, and J. Schmidt, Phys. Status Solidi (RRL) Rapid Res. Lett. 2, 93 (2008).

    Article  Google Scholar 

  48. V. Voronkov and R. Falster, Phys. Status Solidi (b) 253, 1721 (2016).

    Article  Google Scholar 

  49. B. Hallam, M. Abbott, T. Nærland, and S. Wenham, Phys. Status Solidi (RRL) Rapid Res. Lett. 10, 520 (2016).

    Article  Google Scholar 

  50. C. Möller, T. Bartel, F. Gibaja, and K. Lauer, J. Appl. Phys. 116, 024503 (2014).

    Article  Google Scholar 

  51. M. Kim, M. Abbott, N. Nampalli, S. Wenham, B. Stefani, and B. Hallam, J. Appl. Phys. 121, 053106 (2017).

    Article  Google Scholar 

  52. L.C. Snyder, J.W. Corbett, P. Deák, and R. Wu, MRS Online Proc. Lib. Arch. 104, 179 (1987).

  53. U. Gösele and T.Y. Tan, Appl. Phys. A 28, 79 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuegong Yu or Deren Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Yu, X., Wu, Y. et al. Impact of Carbon Codoping on Generation and Dissociation of Boron–Oxygen Defects in Czochralski Silicon. J. Electron. Mater. 47, 5092–5098 (2018). https://doi.org/10.1007/s11664-018-6413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6413-4

Keywords

Navigation