Skip to main content
Log in

Thermal, Structural, AC Conductivity, and Dielectric Properties of Ethyl-2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermal, structural, alternating-current (AC) conductivity (σAC), and dielectric properties of ethyl-2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate (HPQC) thin films have been studied. Thermogravimetry analysis and differential scanning calorimetry confirmed the thermal stability of HPQC over a wide temperature range. Fourier-transform infrared spectroscopy and x-ray diffraction analysis were carried out on HPQC in powder form and as-deposited thin film. The crystal system and space group type were determined for HPQC in powder form. The AC conductivity and dielectric properties were determined in the frequency range from 0.5 kHz to 5 MHz and temperature range from 296 K to 443 K. The AC electrical conduction of HPQC thin film was found to be governed by the small-polaron tunneling mechanism. The polaron hopping energy (WH), tunneling distance (R), and density of states (N) near the Fermi level were determined as functions of temperature and frequency. The dielectric properties of HPQC thin film were studied by analysis of Nyquist diagrams, the dissipation factor (tan δ), and real (ε′) and imaginary (ε″) parts of the dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M. El-Nahass and H.A.M. Ali, Solid State Commun. 152, 1084 (2012).

    Article  Google Scholar 

  2. E.E. Havinga, W. ten Hoeve, and H. Wynberg, Polym. Bull. 29, 119 (1992).

    Article  Google Scholar 

  3. A. Zablotskaya, I. Segal, A. Geronikaki, I. Shestakova, V. Nikolajeva, and G. Makarenkova, Pharmacol. Rep. 69, 575 (2017).

    Article  Google Scholar 

  4. G.C. dos Santos, R.O. Servilha, E.F. de Oliveira, F.C. Lavarda, V.F. Ximenes, and L.C. da Silva-Filho, J. Fluoresc. 27, 1709 (2017).

    Article  Google Scholar 

  5. M.H. Keshavarz, A. Mousaviazar, and M. Hayaty, J. Therm. Anal. Calorim. 3, 1659 (2017).

    Article  Google Scholar 

  6. S. Arroudj, A. Aamoum, L. Messaadia, A. Bouraiou, S. Bouacida, K. Bouchouit, and B. Sahraoui, Phys. B Condens. Matter 516, 1 (2017).

    Article  Google Scholar 

  7. H.M. Zeyada, M.M. El-Nahass, and M.M. El-Shabaan, Philos. Mag. 96, 1150 (2016).

    Article  Google Scholar 

  8. N. Wickremasinghe, J. Thompson, X. Wang, H. Schmitzer, and H.P. Wagner, J. Appl. Phys. 117, 213102 (2015).

    Article  Google Scholar 

  9. R. Fan, X. Wang, Y. Dong, T. Su, J. Huang, X. Du, P. Wang, and Y. Yang, Cryst. Growth Des. (2017). https://doi.org/10.1021/acs.cgd.7b00891.

    Google Scholar 

  10. H.M. Zeyada, M.M. El-Nahass, and M.M. El-Shabaan, Synth. Met. 220, 102 (2016).

    Article  Google Scholar 

  11. A.M. Mansour, F.M.A. El-Taweel, R.A.N. Abu El-Enein, and E.M. El-Menyawy, J. Electron. Mater. 12, 6957 (2017).

    Article  Google Scholar 

  12. H.M. Zeyada, F.M. El-Taweel, M.M. El-Nahass, and M.M. El-Shabaan, Chin. Phys. B 25, 077701 (2016).

    Article  Google Scholar 

  13. N.A. El-Ghamaz, E.M. El-Menyawy, M.A. Diab, A.A. El-Bindary, A.Z. El-Sonbati, and S.G. Nozha, Solid State Sci. 30, 44 (2014).

    Article  Google Scholar 

  14. N.A. El-Ghamaz, M.A. Diab, A.A. El-Bindary, A.Z. El-Sonbati, and S.G. Nozha, Spectrochim. Acta. A. Mol. Biomol Spectrosc. 143, 200 (2015).

    Article  Google Scholar 

  15. H.M. Zeyada, N.A. El-Ghamaz, and E.A. Gaml, Phys. B Condens. Matter 519, 76 (2017).

    Article  Google Scholar 

  16. F.M.A. El-Taweel, A.A. Elagamey, and M.H.M. Khalil, Am. Chem. Sci. J. 3, 532 (2013).

    Article  Google Scholar 

  17. A. Mohamed Saat and M.R. Johan, Sci. World J. 2014, 1 (2014).

  18. Z. Yan, S. Guang, H. Xu, X. Su, X. Ji, and X. Liu, RSC Adv. 3, 8021 (2013).

    Article  Google Scholar 

  19. R. Shirely, The CRYSFIRE system for automatic powder indexing: User’s manual, Guildford, Surrey GU2 7NL England the Lattice Press, 2002.

  20. J. Laugier and B. Bochu, LMGP-suite site of programs for the interpretation of X-ray experiments, BP 46, 38042, ENSP/Laboratoire des Materiaux et du Genie Physique, Saint Martin d’Heres, 2000

  21. A. Ghosh, Phys. Rev. B 42, 5665 (1990).

    Article  Google Scholar 

  22. S.R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  Google Scholar 

  23. E.M. El-Menyawy, I.T. Zedan, and A.M. Mansour, J. Electron. Mater. 46, 4353 (2017).

    Article  Google Scholar 

  24. T. Winie and A.K. Arof, Ionics 10, 193 (2004).

    Article  Google Scholar 

  25. K.S. Rao, K.C.V. Rajulu, and B. Tilak, Int. J. Mod. Phys. B 25, 2931 (2011).

    Article  Google Scholar 

  26. D. Almond, G. Duncan, and A. West, Solid State Ion. 8, 159 (1983).

    Article  Google Scholar 

  27. A.R. Long, Adv. Phys. 31, 553 (1982).

    Article  Google Scholar 

  28. S.R. Elliott, Adv. Phys. 36, 135 (1987).

    Article  Google Scholar 

  29. N.A. El-Ghamaz, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, and S.M. Morgan, Mater. Res. Bull. 65, 293 (2015).

    Article  Google Scholar 

  30. A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, and J. Legrand, J. Phys. Chem. A 116, 1051 (2012).

    Article  Google Scholar 

  31. B.N. Pal and D. Chakravorty, Sens. Actuators B Chem. 114, 1043 (2006).

    Article  Google Scholar 

  32. V.K. Bhatnagar and K.L. Bhatia, J. Non-Cryst. Solids 119, 214 (1990).

    Article  Google Scholar 

  33. N.F. Mott and E.A. Davis, Electronic processes in non-crystalline materials, 2nd ed. (Oxford: Clarendon, 2012).

    Google Scholar 

  34. T. Badapanda, V. Senthil, S.K. Rout, L.S. Cavalcante, A.Z. Simoes, T.P. Sinha, S. Panigrahi, M.M. de Jesus, E. Longo, and J.A. Varela, Curr. Appl. Phys. 11, 1282 (2011).

    Article  Google Scholar 

  35. M. Okutan, E. Basaran, H.I. Bakan, and F. Yakuphanoglu, Phys. B Condens. Matter 364, 300 (2005).

    Article  Google Scholar 

  36. C. Mariappan and G. Govindaraj, Solid State Ion. 176, 1311 (2005).

    Article  Google Scholar 

  37. P.S. Germain, W.G. Pell, and B.E. Conway, Electrochim. Acta 49, 1775 (2004).

    Article  Google Scholar 

  38. E. Barsoukov and J.R. Macdonald, Impedance spectroscopy theory, experiment, and applications (Hoboken: Wiley-Interscience, 2005).

    Book  Google Scholar 

  39. M.M. El-Shabaan, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6098-8.

    Google Scholar 

  40. S. Tewari, A. Bhattacharjee, and P.P. Sahay, J. Mater. Sci. 44, 534 (2009).

    Article  Google Scholar 

  41. M.A.L. Nobre and S. Lanfredi, Mater. Lett. 47, 362 (2001).

    Article  Google Scholar 

  42. M.M. El-Nahass, H.A.M. Ali, and E.F.M. El-Zaidia, Phys. B Condens. Matter 431, 54 (2013).

    Article  Google Scholar 

  43. M.A.M. Seyam, Appl. Surf. Sci. 181, 128 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. El-Shabaan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shabaan, M.M. Thermal, Structural, AC Conductivity, and Dielectric Properties of Ethyl-2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate Thin Films. J. Electron. Mater. 47, 5174–5182 (2018). https://doi.org/10.1007/s11664-018-6398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6398-z

Keywords

Navigation