Skip to main content
Log in

Effects of O2 Partial Pressure on Composition and Infrared Emissivity of PtO x Films Prepared by Reactive Magnetron Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

PtO x films have been prepared by reactive magnetron sputtering on glass substrates without external heating and characterized by x-ray diffraction (XRD) analysis, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The resulting PtO x films mainly consisted of amorphous PtO and PtO2, and the composition largely depended on the O2 partial pressure during sputtering. In this study, the effects of the O2 partial pressure on the deposition rate, composition, surface morphology, structure, electrical resistivity, and infrared emissivity of the as-deposited PtO x films were evaluated. It was found that, with increase in the O2 partial pressure, the O/Pt atomic ratio, resistivity, and infrared emissivity of the as-deposited PtO x film increased, while the deposition rate first increased then decreased with increasing O2 partial pressure. In addition, the O2 partial pressure had little influence on the structure or surface morphology of the as-deposited PtO x film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.C. Zhang and Y.G. Shen, Sol. Energy. Mater. Sol. Cells 81, 25 (2004).

    Article  Google Scholar 

  2. F.Y. Zhang, Y.M. Zhou, Y. Cao, and J. Chen, Mater. Lett. 61, 4811 (2007).

    Article  Google Scholar 

  3. Z.B. Huang, D.M. Zhu, F. Lou, and W.C. Zhou, Appl. Surf. Sci. 255, 2619 (2008).

    Article  Google Scholar 

  4. Z.B. Huang, W.C. Zhou, X.F. Tang, F. Luo, and D.M. Zhu, Appl. Surf. Sci. 256, 6893 (2010).

    Article  Google Scholar 

  5. Z.B. Huang, W.C. Zhou, and X.F. Tang, Appl. Surf. Sci. 256, 2025 (2010).

    Article  Google Scholar 

  6. K.S. Chou and Y.C. Lu, Thin Solid Films 515, 7217 (2007).

    Article  Google Scholar 

  7. E. Ando and M. Miyazaki, Thin Solid Films 516, 4574 (2008).

    Article  Google Scholar 

  8. E. Ando, S. Suzuki, and N. Aomine, et’ al., Vacuum 59, 792 (2000).

    Article  Google Scholar 

  9. X.Y. Ye, Y.M. Zhou, Y.Q. Sun, J. Chen, and Z.Q. Wang, Appl. Surf. Sci. 254, 5975 (2008).

    Article  Google Scholar 

  10. H.J. Yu, G.Y. Xu, and X.M. Shen, Appl. Surf. Sci. 255, 6077 (2009).

    Article  Google Scholar 

  11. J. Chen, Y.M. Zhou, Q.L. Zhou, Y.Q. Sun, X.Y. Ye, and Z.Q. Wang, Appl. Surf. Sci. 253, 9154 (2007).

    Article  Google Scholar 

  12. X.X. Yan and G.Y. Xu, Prog. Org. Coat. 69, 481 (2010).

    Article  Google Scholar 

  13. C. Hu, G.Y. Xu, X.M. Shen, R. Huang, and F.L. Li, J. Alloys Compd. 496, 691 (2010).

    Article  Google Scholar 

  14. C. Hu, G.Y. Xu, X.M. Shen, C.M. Shao, and X.X. Yan, Appl. Surf. Sci. 256, 3459 (2010).

    Article  Google Scholar 

  15. Z.B. Huang, W.C. Zhou, X.F. Tang, D.M. Zhu, and F. Luo, Thin Solid Films 519, 3100 (2011).

    Article  Google Scholar 

  16. Z.B. Huang, W.C. Zhou, and X.F. Tang, Acta Metall. Sin. (Engl. Lett.) 23, 1 (2010).

    Google Scholar 

  17. T. Hao, L.H. Tao, and C.H. Feng, Chin. Phys. B 23, 025201 (2014).

    Article  Google Scholar 

  18. H. Neff, S. Henkel, E. Hartmannsgruber, E. Steinbeiss, W. Michalke, K. Steenbeck, and H.G. Schmidt, J. Appl. Phys. 79, 7672 (1996).

    Article  Google Scholar 

  19. I. Dutta, M.K. Carpenter, M.P. Balogh, J.M. Ziegelbauer, T.E. Moylan, M.H. Atwan, and N.P. Irish, J. Phys. Chem. C 114, 16309 (2010).

    Article  Google Scholar 

  20. A. Mosquera, D. Horwat, L. Vazquez, A. Gutiérrez, A. Erko, A. Anders, J. Andersson, and J.L. Endrino, J. Mater. Res. 27, 829 (2012).

    Article  Google Scholar 

  21. K.L. Saenger, C. Cabral, C. Lavoie, and S.M. Rossnagel, J. Appl. Phys. 86, 6084 (1999).

    Article  Google Scholar 

  22. A.V. Kolobov, F. Wilhelm, A. Rogalev, T. Shima, and J. Tominaga, Appl. Phys. Lett. 86, 121909 (2005).

    Article  Google Scholar 

  23. J.R. McBride, G.W. Graham, C.R. Peters, and W.H. Weber, J. Appl. Phys. 69, 1596 (1991).

    Article  Google Scholar 

  24. Y. Abe, M. Kawamura, and K. Sasaki, Jpn. J. Appl. Phys. 38, 2092 (1999).

    Article  Google Scholar 

  25. L. Maya, L. Riester, T. Thundat, and C.S. Yust, J. Appl. Phys. 84, 6382 (1998).

    Article  Google Scholar 

  26. Y. Abe, H. Yanagisawa, and K. Sasaki, Jpn. J. Appl. Phys. 37, 4482 (1998).

    Article  Google Scholar 

  27. P. Fuchs, Appl. Surf. Sci. 256, 1382 (2009).

    Article  Google Scholar 

  28. C.R. Aita and N.C. Tran, J. Appl. Phys. 56, 958 (1984).

    Article  Google Scholar 

  29. M. Clery, Propriéties physique et structurales d’une résistance thermique en Zircone yttriée obtenue par pulvérisation cathodique, Thesis, Université Paris VI, Jun, (1992).

  30. H.Y. Wang and Y.C. Hu, Int. J. Photoenergy 2013, 1 (2013).

    Google Scholar 

  31. K. Kuribayashi and S. Kitamura, Thin Solid Films 400, 160 (2001).

    Article  Google Scholar 

  32. Y.C. Chen, Y.M. Sun, S.Y. Yu, C.P. Hsiung, J.Y. Gan, and C.S. Kou, Nucl. Instrum. Methods B 237, 296 (2005).

    Article  Google Scholar 

  33. M.M. da Silva, A.R. Vaz, S.A. Moshkalev, and J.W. Swart, ECS Trans. 9, 235 (2007).

    Article  Google Scholar 

  34. V. Dolique, A.L. Thomann, E. Millon, A. Petit, and P. Brault, Appl. Surf. Sci. 295, 194 (2014).

    Article  Google Scholar 

  35. Y.Q. Li, Y.Z. Shen, and F.L. Du, Mater. Res. Innov. 18, 57 (2014).

    Article  Google Scholar 

  36. D.M. Zhu, K. Li, F. Luo, and W.C. Zhou, Appl. Surf. Sci. 255, 6145 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Chinese National Natural Science Foundation (No. 51072165) and the fund of the States Key Laboratory of the Solidification Processing in NWPU (No. KP201307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Zhu, D., Huang, Z. et al. Effects of O2 Partial Pressure on Composition and Infrared Emissivity of PtO x Films Prepared by Reactive Magnetron Sputtering. J. Electron. Mater. 47, 2746–2751 (2018). https://doi.org/10.1007/s11664-018-6128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6128-6

Keywords

Navigation