Skip to main content
Log in

A Comparative Study of Gas Sensing Properties of Tungsten Oxide, Tin Oxide and Tin-Doped Tungsten Oxide Thin Films for Acetone Gas Detection

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nowadays, various metal oxide thin films have been used for the purpose of gas sensing. This research depicts a comparison of gas sensing properties among four different metal oxide thin films, namely, tungsten dioxide (WO2), tungsten trioxide (WO3), tin oxide (SnO2) and tin doped tungsten trioxide (Sn-doped WO3), for detecting acetone gas. Each metal oxide thin film was subjected tp acetone gas flow of various concentrations and the corresponding changes in resistance were calculated. Characterizations such as x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and gas sensing characterization for recording resistance changes have been performed. Each film was annealed at different temperatures for 1 h (WO2 and WO3 at 500°C, SnO2 at 300°C and Sn-doped WO3 at 400°C) so as to achieve an optimum grain size for sensing. The XRD patterns reveal formation of an orthorhombic phase of WO2, hexagonal phase of WO3 and orthorhombic phase of SnO2. AFM and SEM depict clear images of grain boundaries on the film. SnO2 has been found to be the best thin film for sensing acetone gas. Operational optimum temperature for sensing acetone gas has been calculated for each thin film (260°C for WO2, 220°C for WO3, 360°C for SnO2 and 300°C for Sn-doped WO3). It can detect a very low concentration of 1.5 ppm acetone gas with a good resistance response change of 30%. Various concentrations of acetone gas, namely, 1.5 ppm, 3 ppm, 5 ppm, 7 ppm, 10 ppm, 15 ppm and 20 ppm, have been detected using these metal oxide thin films, and thus the comparison has been made. The response time for SnO2 is approximately 3 min and recovery time is approximately 4 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Brattain and J. Bardeen, Bell Syst. Tech. J. 32, 1 (1953).

    Article  Google Scholar 

  2. B. Guo, S. Xu, Q. Yu, F. Sui, A. Xu, and N. Zhou, MAPAN. 32, 265 (2017).

    Article  Google Scholar 

  3. G. Lentka, MAPAN. 32, 223 (2017).

    Article  Google Scholar 

  4. J.G. Watson, J.C. Chow, R.J. Tropp, X.L. Wang, S.D. Kohl, and L.A. Chen, MAPAN. 28, 167 (2013).

    Article  Google Scholar 

  5. S. Sachdeva, A. Agarwal, and R. Agarwal, MAPAN. 33, 57 (2018).

    Article  Google Scholar 

  6. R.S. Khadayate, J.V. Sali, and P.P. Patil, Talanta 72, 1077 (2007).

    Article  CAS  Google Scholar 

  7. M. Govender, D.E. Motaung, B.W. Mwakikunga, S. Umapathy, S. Sil, A.K. Prasad, A.G. Machatine, and H.W. Kunert, Sensors 1–4 (2013).

  8. G.J. Li and S. Kawi, Talanta 45, 759 (1988).

    Article  Google Scholar 

  9. X.L. Li, T.J. Lou, X.M. Sun, and Y.D. Li, Inorg. Chem. 43, 5442 (2004).

    Article  CAS  Google Scholar 

  10. M. Penza, M.A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, Sens. Actuator B-Chem. 50, 9 (1988).

    Article  Google Scholar 

  11. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    Article  CAS  Google Scholar 

  12. J. Zhang, W. Zhang, Z. Yang, Z. Yu, X. Zhang, T.C. Chang, and A. Javey, Sens. Actuator B-Chem. 202, 708 (2014).

    Article  CAS  Google Scholar 

  13. I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, and J.R. Morante, Sens. Actuator B-Chem. 93, 475 (2003).

    Article  CAS  Google Scholar 

  14. Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, and Z.G. Jin, J. Mater. Chem. A. 2, 13602 (2014).

    Article  CAS  Google Scholar 

  15. Z. Liu, M. Miyauchi, T. Yamazaki, and Y. Shen, Sens. Actuator B-Chem. 140, 514 (2009).

    Article  CAS  Google Scholar 

  16. C.S. Rout, M. Hegde, and C.N. Rao, Sens. Actuator B-Chem. 128, 488 (2008).

    Article  CAS  Google Scholar 

  17. J. Tamaki, A. Hayashi, Y. Yamamoto, and M. Matsuoka, Sens. Actuator B-Chem. 95, 111 (2003).

    Article  CAS  Google Scholar 

  18. K. Aguir, C. Lemire, and D.B. Lollman, Sens. Actuator B-Chem. 84, 1 (2002).

    Article  CAS  Google Scholar 

  19. C. Cantalini, M.Z. Atashbar, Y. Li, M.K. Ghantasala, S. Santucci, W. Wlodarski, and M. Passacantando, J. Vac. Sci. Technol. 17, 1873 (1999).

    Article  CAS  Google Scholar 

  20. A. Monteiro, M.F. Costa, B. Almeida, V. Teixeira, J. Gago, and E. Roman, Vacuum 64, 287 (2002).

    Article  CAS  Google Scholar 

  21. A.D. Kuypers, C.I. Spee, J.L. Linden, G. Kirchner, J.F. Forsyth, and A. Mackor, Surf. Coat. Technol. 74, 1033 (1995).

    Article  Google Scholar 

  22. M. Tong, G. Dai, and D. Gao, Mater. Chem. Phys. 69, 176 (2001).

    Article  CAS  Google Scholar 

  23. M. Penza, G. Cassano, and F. Tortorella, Sens. Actuator B-Chem. 81, 115 (2001).

    Article  CAS  Google Scholar 

  24. L. Lozzi, L. Ottaviano, M. Passacantando, S. Santucci, and C. Cantalini, Thin Solid Films 391, 224 (2001).

    Article  CAS  Google Scholar 

  25. M. Regragui, V. Jousseaume, M. Addou, A. Outzourhit, J.C. Bernede, and B. El Idrissi, Thin Solid Films 397, 238 (2001).

    Article  CAS  Google Scholar 

  26. H.A. Wriedt, Bull. Alloy Phase Diagr. 10, 368 (1989).

    Article  CAS  Google Scholar 

  27. E.D. Desi, J. Am. Chem. Soc. 19, 213 (1897).

    Article  Google Scholar 

  28. A.F. Wells, Structural Inorganic Chemistry (Oxford: Oxford University Press, 2012).

    Google Scholar 

  29. F.R. Sale, Thermochim. Acta 30, 163 (1979).

    Article  CAS  Google Scholar 

  30. XXXX

  31. T. Maekawa, K. Suzuki, T. Takada, T. Kobayashi, and M. Egashira, Sens. Actuator B-Chem. 80, 51 (2001).

    Article  CAS  Google Scholar 

  32. S.C. Ray, M.K. Karanjai, and D. DasGupta, Surf. Coat. Technol. 102, 73 (1988).

    Google Scholar 

  33. Y.S. Choe, Sens. Actuator B-Chem. 77, 200 (2001).

    Article  CAS  Google Scholar 

  34. G. Sakai, N.S. Baik, N. Miura, and N. Yamazoe, Sens. Actuator B-Chem. 77, 116 (2001).

    Article  CAS  Google Scholar 

  35. K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  CAS  Google Scholar 

  36. R. Banerjee and D. Das, Thin Solid Films 149, 291 (1987).

    Article  CAS  Google Scholar 

  37. C. Tatsuyama and S. Ichimura, Jpn. J. Appl. Phys. 15, 843 (1976).

    Article  CAS  Google Scholar 

  38. A. Aoki and H. Sasakura, Jpn. J. Appl. Phys. 9, 582 (1970).

    Article  CAS  Google Scholar 

  39. R.S. Niranjan and I.S. Mulla, Mater. Sci. Eng., B 103, 103 (2003).

    Article  CAS  Google Scholar 

  40. N.S. Baik, G. Sakai, N. Miura, and N. Yamazoe, Sens. Actuator B-Chem. 63, 74 (2000).

    Article  CAS  Google Scholar 

  41. R. Dolbec, M.A. El Khakani, A.M. Serventi, and R.G. Saint-Jacques, Sens. Actuator B-Chem. 93, 566 (2003).

    Article  CAS  Google Scholar 

  42. H. Yan, G.H. Chen, W.K. Man, S.P. Wong, and R.W. Kwok, Thin Solid Films 326, 88 (1998).

    Article  CAS  Google Scholar 

  43. G.G. Mandayo, E. Castano, F.J. Gracia, A. Cirera, A. Cornet, and J.R. Morante, Sens. Actuator B-Chem. 95, 90 (2003).

    Article  CAS  Google Scholar 

  44. E. Comini, G. Faglia, and G. Sberveglieri, Sens. Actuator B-Chem. 78, 73 (2001).

    Article  CAS  Google Scholar 

  45. S. Liu, F. Zhang, H. Li, T. Chen, and Y. Wang, Sens. Actuator B-Chem. 162, 259 (2012).

    Article  CAS  Google Scholar 

  46. K.W. Kao, M.C. Hsu, Y.H. Chang, S. Gwo, and J.A. Yeh, Sensors. 12, 7157 (2012).

    Article  CAS  Google Scholar 

  47. A. Manolis, Clin. Chem. 29, 5 (1983).

    CAS  Google Scholar 

  48. T.D. Minh, D.R. Blake, and P.R. Galassetti, Diabetes Res. Clin. Pract. 97, 195 (2012).

    Article  Google Scholar 

  49. M. Righettoni and A. Tricoli, J. Breath Res. 5, 037109 (2011).

    Article  CAS  Google Scholar 

  50. M. Righettoni, A. Tricoli, and S.E. Pratsinis, Anal. Chem. 82, 3581 (2010).

    Article  CAS  Google Scholar 

  51. S. Durrani, M.F. Al-Kuhaili, I.A. Bakhtiari, and M.B. Haider, Sensors 12, 2598 (2012).

    Article  CAS  Google Scholar 

  52. A.A. Ziabari, S.M. Rozati, Z. Bargbidi, and G. Kiriakidis, Trans. Electr. Electron. Mater. 13, 111 (2012).

    Article  Google Scholar 

  53. K. Zakrzewska, Thin Solid Films 391, 229 (2001).

    Article  CAS  Google Scholar 

  54. I. Horcas, R. Fernández, J.M. Gomez-Rodriguez, J.W. Colchero, J.W. Gómez-Herrero, and A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

  55. S. Sachdeva, R. Agarwal, and A. Agarwal, Bull. Mater. Sci. 41, 105 (2018). https://doi.org/10.1007/s12034-018-1617-z.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Prakash Gopalan, Director, Thapar University, Patiala, and Prof. Santanu Chaudhury, Director, CSIR-CEERI, Pilani, for providing the research facilities. Financial support provided by Department of Science and Technology (DST-INSPIRE Fellowship), New Delhi, Govt. of India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smiti Sachdeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, S., Agarwal, A. & Agarwal, R. A Comparative Study of Gas Sensing Properties of Tungsten Oxide, Tin Oxide and Tin-Doped Tungsten Oxide Thin Films for Acetone Gas Detection. J. Electron. Mater. 48, 1617–1628 (2019). https://doi.org/10.1007/s11664-018-06881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06881-1

Keywords

Navigation