A Comparative Study of Gas Sensing Properties of Tungsten Oxide, Tin Oxide and Tin-Doped Tungsten Oxide Thin Films for Acetone Gas Detection

Abstract

Nowadays, various metal oxide thin films have been used for the purpose of gas sensing. This research depicts a comparison of gas sensing properties among four different metal oxide thin films, namely, tungsten dioxide (WO2), tungsten trioxide (WO3), tin oxide (SnO2) and tin doped tungsten trioxide (Sn-doped WO3), for detecting acetone gas. Each metal oxide thin film was subjected tp acetone gas flow of various concentrations and the corresponding changes in resistance were calculated. Characterizations such as x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and gas sensing characterization for recording resistance changes have been performed. Each film was annealed at different temperatures for 1 h (WO2 and WO3 at 500°C, SnO2 at 300°C and Sn-doped WO3 at 400°C) so as to achieve an optimum grain size for sensing. The XRD patterns reveal formation of an orthorhombic phase of WO2, hexagonal phase of WO3 and orthorhombic phase of SnO2. AFM and SEM depict clear images of grain boundaries on the film. SnO2 has been found to be the best thin film for sensing acetone gas. Operational optimum temperature for sensing acetone gas has been calculated for each thin film (260°C for WO2, 220°C for WO3, 360°C for SnO2 and 300°C for Sn-doped WO3). It can detect a very low concentration of 1.5 ppm acetone gas with a good resistance response change of 30%. Various concentrations of acetone gas, namely, 1.5 ppm, 3 ppm, 5 ppm, 7 ppm, 10 ppm, 15 ppm and 20 ppm, have been detected using these metal oxide thin films, and thus the comparison has been made. The response time for SnO2 is approximately 3 min and recovery time is approximately 4 min.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W.H. Brattain and J. Bardeen, Bell Syst. Tech. J. 32, 1 (1953).

    Article  Google Scholar 

  2. 2.

    B. Guo, S. Xu, Q. Yu, F. Sui, A. Xu, and N. Zhou, MAPAN. 32, 265 (2017).

    Article  Google Scholar 

  3. 3.

    G. Lentka, MAPAN. 32, 223 (2017).

    Article  Google Scholar 

  4. 4.

    J.G. Watson, J.C. Chow, R.J. Tropp, X.L. Wang, S.D. Kohl, and L.A. Chen, MAPAN. 28, 167 (2013).

    Article  Google Scholar 

  5. 5.

    S. Sachdeva, A. Agarwal, and R. Agarwal, MAPAN. 33, 57 (2018).

    Article  Google Scholar 

  6. 6.

    R.S. Khadayate, J.V. Sali, and P.P. Patil, Talanta 72, 1077 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    M. Govender, D.E. Motaung, B.W. Mwakikunga, S. Umapathy, S. Sil, A.K. Prasad, A.G. Machatine, and H.W. Kunert, Sensors 1–4 (2013).

  8. 8.

    G.J. Li and S. Kawi, Talanta 45, 759 (1988).

    Article  Google Scholar 

  9. 9.

    X.L. Li, T.J. Lou, X.M. Sun, and Y.D. Li, Inorg. Chem. 43, 5442 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    M. Penza, M.A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, Sens. Actuator B-Chem. 50, 9 (1988).

    Article  Google Scholar 

  11. 11.

    C.G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    J. Zhang, W. Zhang, Z. Yang, Z. Yu, X. Zhang, T.C. Chang, and A. Javey, Sens. Actuator B-Chem. 202, 708 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, and J.R. Morante, Sens. Actuator B-Chem. 93, 475 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, and Z.G. Jin, J. Mater. Chem. A. 2, 13602 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Z. Liu, M. Miyauchi, T. Yamazaki, and Y. Shen, Sens. Actuator B-Chem. 140, 514 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    C.S. Rout, M. Hegde, and C.N. Rao, Sens. Actuator B-Chem. 128, 488 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    J. Tamaki, A. Hayashi, Y. Yamamoto, and M. Matsuoka, Sens. Actuator B-Chem. 95, 111 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    K. Aguir, C. Lemire, and D.B. Lollman, Sens. Actuator B-Chem. 84, 1 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    C. Cantalini, M.Z. Atashbar, Y. Li, M.K. Ghantasala, S. Santucci, W. Wlodarski, and M. Passacantando, J. Vac. Sci. Technol. 17, 1873 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    A. Monteiro, M.F. Costa, B. Almeida, V. Teixeira, J. Gago, and E. Roman, Vacuum 64, 287 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    A.D. Kuypers, C.I. Spee, J.L. Linden, G. Kirchner, J.F. Forsyth, and A. Mackor, Surf. Coat. Technol. 74, 1033 (1995).

    Article  Google Scholar 

  22. 22.

    M. Tong, G. Dai, and D. Gao, Mater. Chem. Phys. 69, 176 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    M. Penza, G. Cassano, and F. Tortorella, Sens. Actuator B-Chem. 81, 115 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    L. Lozzi, L. Ottaviano, M. Passacantando, S. Santucci, and C. Cantalini, Thin Solid Films 391, 224 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    M. Regragui, V. Jousseaume, M. Addou, A. Outzourhit, J.C. Bernede, and B. El Idrissi, Thin Solid Films 397, 238 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    H.A. Wriedt, Bull. Alloy Phase Diagr. 10, 368 (1989).

    CAS  Article  Google Scholar 

  27. 27.

    E.D. Desi, J. Am. Chem. Soc. 19, 213 (1897).

    Article  Google Scholar 

  28. 28.

    A.F. Wells, Structural Inorganic Chemistry (Oxford: Oxford University Press, 2012).

    Google Scholar 

  29. 29.

    F.R. Sale, Thermochim. Acta 30, 163 (1979).

    CAS  Article  Google Scholar 

  30. 30.

    XXXX

  31. 31.

    T. Maekawa, K. Suzuki, T. Takada, T. Kobayashi, and M. Egashira, Sens. Actuator B-Chem. 80, 51 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    S.C. Ray, M.K. Karanjai, and D. DasGupta, Surf. Coat. Technol. 102, 73 (1988).

    Google Scholar 

  33. 33.

    Y.S. Choe, Sens. Actuator B-Chem. 77, 200 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    G. Sakai, N.S. Baik, N. Miura, and N. Yamazoe, Sens. Actuator B-Chem. 77, 116 (2001).

    CAS  Article  Google Scholar 

  35. 35.

    K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983).

    CAS  Article  Google Scholar 

  36. 36.

    R. Banerjee and D. Das, Thin Solid Films 149, 291 (1987).

    CAS  Article  Google Scholar 

  37. 37.

    C. Tatsuyama and S. Ichimura, Jpn. J. Appl. Phys. 15, 843 (1976).

    CAS  Article  Google Scholar 

  38. 38.

    A. Aoki and H. Sasakura, Jpn. J. Appl. Phys. 9, 582 (1970).

    CAS  Article  Google Scholar 

  39. 39.

    R.S. Niranjan and I.S. Mulla, Mater. Sci. Eng., B 103, 103 (2003).

    Article  CAS  Google Scholar 

  40. 40.

    N.S. Baik, G. Sakai, N. Miura, and N. Yamazoe, Sens. Actuator B-Chem. 63, 74 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    R. Dolbec, M.A. El Khakani, A.M. Serventi, and R.G. Saint-Jacques, Sens. Actuator B-Chem. 93, 566 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    H. Yan, G.H. Chen, W.K. Man, S.P. Wong, and R.W. Kwok, Thin Solid Films 326, 88 (1998).

    CAS  Article  Google Scholar 

  43. 43.

    G.G. Mandayo, E. Castano, F.J. Gracia, A. Cirera, A. Cornet, and J.R. Morante, Sens. Actuator B-Chem. 95, 90 (2003).

    CAS  Article  Google Scholar 

  44. 44.

    E. Comini, G. Faglia, and G. Sberveglieri, Sens. Actuator B-Chem. 78, 73 (2001).

    CAS  Article  Google Scholar 

  45. 45.

    S. Liu, F. Zhang, H. Li, T. Chen, and Y. Wang, Sens. Actuator B-Chem. 162, 259 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    K.W. Kao, M.C. Hsu, Y.H. Chang, S. Gwo, and J.A. Yeh, Sensors. 12, 7157 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    A. Manolis, Clin. Chem. 29, 5 (1983).

    CAS  Google Scholar 

  48. 48.

    T.D. Minh, D.R. Blake, and P.R. Galassetti, Diabetes Res. Clin. Pract. 97, 195 (2012).

    Article  Google Scholar 

  49. 49.

    M. Righettoni and A. Tricoli, J. Breath Res. 5, 037109 (2011).

    Article  CAS  Google Scholar 

  50. 50.

    M. Righettoni, A. Tricoli, and S.E. Pratsinis, Anal. Chem. 82, 3581 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    S. Durrani, M.F. Al-Kuhaili, I.A. Bakhtiari, and M.B. Haider, Sensors 12, 2598 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    A.A. Ziabari, S.M. Rozati, Z. Bargbidi, and G. Kiriakidis, Trans. Electr. Electron. Mater. 13, 111 (2012).

    Article  Google Scholar 

  53. 53.

    K. Zakrzewska, Thin Solid Films 391, 229 (2001).

    CAS  Article  Google Scholar 

  54. 54.

    I. Horcas, R. Fernández, J.M. Gomez-Rodriguez, J.W. Colchero, J.W. Gómez-Herrero, and A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  Article  Google Scholar 

  55. 55.

    S. Sachdeva, R. Agarwal, and A. Agarwal, Bull. Mater. Sci. 41, 105 (2018). https://doi.org/10.1007/s12034-018-1617-z.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Prakash Gopalan, Director, Thapar University, Patiala, and Prof. Santanu Chaudhury, Director, CSIR-CEERI, Pilani, for providing the research facilities. Financial support provided by Department of Science and Technology (DST-INSPIRE Fellowship), New Delhi, Govt. of India is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Smiti Sachdeva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, S., Agarwal, A. & Agarwal, R. A Comparative Study of Gas Sensing Properties of Tungsten Oxide, Tin Oxide and Tin-Doped Tungsten Oxide Thin Films for Acetone Gas Detection. Journal of Elec Materi 48, 1617–1628 (2019). https://doi.org/10.1007/s11664-018-06881-1

Download citation

Keywords

  • Metal oxide thin films
  • tungsten oxide
  • tin oxide
  • tin-doped tungsten oxide
  • surface metrology
  • topography
  • gas sensing
  • acetone gas detection