Skip to main content
Log in

Standards and Traceability for Air Quality Measurements: Flow Rates and Gaseous Pollutants

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Accurate and precise flow rate and gas concentration measurement standards are needed for comparable air quality measurements. Transfer standards are most often used for calibration, performance testing, and auditing of field monitors. These must be traceable to primary standards that are in turn derived from fundamental units of length, mass, temperature, and time. Flow rates and volumes are measured by devices based on positive displacement, pressure differences, and temperature increases or decreases. Stable gas concentrations are prepared in non-reactive pressurized containers by gravimetric and dilution methods. Reactive gases are generated from photochemistry and permeation devices. These standards are used to determine the accuracy, precision, and validity of air quality measurements, and these attributes should be reported with the measurement values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ISO, International Standards Organization. Prepared by International Organization for Standardization, Geneva, Switzerland, (2013), http://www.iso.org/iso/home.html.

  2. ASTM, American Society for Testing and Materials. Prepared by American Society for Testing Materials International, Conshohocken, PA, (2013), http://www.astm.org/.

  3. J. D. Bachmann, Will the circle be unbroken: a history of the U.S. national ambient air quality standards-2007 critical review, J. Air Waste Manag. Assoc., 57 (2007) 652–697, doi:10.3155-1047-3289.57.6.652.pdf.

    Article  Google Scholar 

  4. J. J. Cao, J. C. Chow, S. C. Lee and J. G. Watson, Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China, AAQR, 13 (2013) 1197–1121, http://aaqr.org/VOL13_No4_August2013/5_AAQR-12-11-OA-0302_1197-1211.pdf.

  5. J. C. Chow, J. G. Watson, H. J. Feldman, J. Nolan, B. R. Wallerstein, G. M. Hidy, P. J. Lioy, H. C. McKee, J. D. Mobley, K. Bauges and J. D. Bachmann, 2007 critical review discussion—will the circle be unbroken: a history of the U.S. National Ambient Air Quality Standards, J. Air Waste Manag. Assoc., 57 (2007) 1151–1163, doi: 10.3155/1047-3289.57.10.1151.

    Article  Google Scholar 

  6. C. Vahlsing and K. R. Smith, Global review of national ambient air quality standards for PM10 and SO2 (24 h), Air Qual. Atmos. Health, 5 (2012) 393–399, doi: 10.1007/s11869-010-0131-2, http://ehs.sph.berkeley.edu/krsmith/publications/AWAH%20AQGs%2011%20with%20sup.pdf.

  7. WHO, WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. Report Number WHO/DE/PHE/OEH/06.02, prepared by World Health Organization, Geneva, Switzerland, (2006), http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf.

  8. World Bank, Air quality standards. Prepared by the World Bank, Washington, DC, (2007), http://www.worldbank.org/html/fpd/em/power/standards/airqstd.stm.

  9. J. C. Chow, Critical review: measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air Waste Manag. Assoc., 45 (1995) 320–382, doi: 10.1080/10473289.1995.10467369.

    Article  Google Scholar 

  10. J. G. Watson, G. D. Thurston, N. H. Frank, J. P. Lodge, R. W. Wiener, F. F. McElroy, M. T. Kleinman, P. K. Mueller, A. C. Schmidt, F. W. Lipfert, R. J. Thompson, P. K. Dasgupta, D. Marrack, R. A. Michaels, T. Moore, S. Penkala, I. H. Tombach, L. Vestman, T. Hauser and J. C. Chow, Measurement methods to determine compliance with ambient air quality standards for suspended particles: critical review discussion, J. Air Waste Manag. Assoc., 45 (1995) 666–684, doi: 10.1080/10473289.1995.10467395.

    Article  Google Scholar 

  11. U.S. EPA, List of designated reference and equivalent methods. Prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, (2012), http://www.epa.gov/ttn/amtic/files/ambient/criteria/reference-equivalent-methods-list.pdf.

  12. U.S. EPA, Method 5—particulate matter (PM). Prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, (2008), http://www.epa.gov/ttn/emc/methods/method5.html.

  13. G. C. England, B. Zielinska, K. Loos, I. Crane and K. Ritter, Characterizing PM2.5 emission profiles for stationary sources: comparison of traditional and dilution sampling techniques, Fuel Process. Technol., 65 (2000) 177–188.

    Article  Google Scholar 

  14. M.-C. O. Chang, J. C. Chow, J. G. Watson, P. K. Hopke, S. M. Yi and G. C. England, Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources, J. Air Waste Manag. Assoc., 54 (2004) 1494–1505, doi: 10.1080/10473289.2004.10471010.

    Article  Google Scholar 

  15. J. G. Watson, J. C. Chow, X. L. Wang, S. D. Kohl, L.-W. A. Chen and V. Etyemezian, Overview of real-world emission characterization methods. In: K. E. Percy (ed), Alberta Oil Sands: Energy, Industry, and the Environment. Elsevier Press, Amsterdam, pp. 145–170, (2012).

  16. W. C. Baker and J. F. Pouchot, The measurement of gas flow. Part I, J. Air Pollut. Control Assoc., 33 (1983a) 66–72, doi: 10.1080/00022470.1983.10465548.

  17. W. C. Baker and J. F. Pouchot, The measurement of gas flow: part II, J. Air Pollut. Control Assoc., 33 (1983b) 156–162, doi: 10.1080/00022470.1983.10465559.

  18. H. S. Bean, Fluid Meters: Their Theory and Applications. American Society of Mechanical Engineers, New York, (1971).

    Google Scholar 

  19. U.S. EPA, 40 CFR parts 50, 51, 52, 53, and 58-National ambient air quality standards for particulate matter: final rule, Fed. Regist., 78 (2013) 3086–3286, http://www.gpo.gov/fdsys/pkg/FR-2013-01-15/pdf/2012-30946.pdf.

  20. E. Kebbekus and F. Scornavacca, Factors in the selection of calibration gas standards, Am. Lab., 9 (1977) 51–57.

    Google Scholar 

  21. R. S. Barratt, The preparation of standard gas mixtures. A review, Analyst, 106 (1981) 817–849.

    Article  ADS  Google Scholar 

  22. J. Namiesnik, Generation of standard gaseous mixtures, J. Chromatogr. A, 300 (1984) 79–108.

    Google Scholar 

  23. ISO, ISO 6145-1:2003: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 1: methods of calibration. Prepared by International Organization for Standardization, Geneva, Switzerland, (2003a), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=24667.

  24. O. R. Moss, Calibration of gas and vapor samplers. In: B. S. Cohen, C. S. J. McCammon (eds), Air Sampling Instruments for Evaluation of Atmospheric Contaminants, 9th. ACGIH, Cincinnati, pp. 163–175, (2001).

  25. A. Naganowska-Nowak, P. Konieczka, A. Przyjazny and J. Namiesnik, Development of techniques of generation of gaseous standard mixtures, Crit. Rev. Anal. Chem., 35 (2005) 31–55.

    Article  Google Scholar 

  26. ISO, ISO 6142:2001: gas analysis—preparation of calibration gas mixtures—gravimetric method. Prepared by International Organization for Standardization, Geneva, Switzerland, (2001a), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=24663.

  27. ISO, ISO 6145-2:2001: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 2: volumetric pumps. Prepared by International Organization for Standardization, Geneva, Switzerland, (2001b), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=33361.

  28. ISO, ISO 6145-10:2002: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 10: permeation method. Prepared by International Organization for Standardization, Geneva, Switzerland, (2002), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=25916.

  29. ISO, ISO 6145-6:2003: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 6: critical orifices. Prepared by International Organization for Standardization, Geneva, Switzerland, (2003a), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28433.

  30. ISO, ISO 6144:2003: gas analysis—preparation of calibration gas mixtures—static volumetric method. Prepared by International Organization for Standardization, Geneva, Switzerland, (2003b).

  31. ISO, ISO 6145-4:2004: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 4: continuous syringe injection method. Prepared by International Organization for Standardization, Geneva, Switzerland, (2004), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36478.

  32. ISO, ISO 6145-11:2005: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 11: electrochemical generation. Prepared by International Organization for Standardization, Geneva, Switzerland, (2005), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28433.

  33. ISO, ISO 6145-5:2009: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 5: capillary calibration devices. Prepared by International Organization for Standardization, Geneva, Switzerland, (2009a), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=45470.

  34. ISO, ISO 6145-7:2009: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 7: thermal mass-flow controllers. Prepared by International Organization for Standardization, Geneva, Switzerland, (2009b), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=45471.

  35. ISO, ISO 6145-9:2009: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 9: saturation method. Prepared by International Organization for Standardization, Geneva, Switzerland, (2009c), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=45469.

  36. ISO, ISO 25597:2013: Stationary source emissions—Test method for determining PM2.5 and PM10 mass in stack gases using cyclone samplers and sample dilution. Prepared by International Organization for Standardization, Geneva, Switzerland, (2013), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43029.

  37. B. E. Saltzman and A. F. Wartburg Jr, A precision flow dilution system for standard low concentrations of nitrogen dioxide, Anal. Chem., 37 (1965) 1261.

    Article  Google Scholar 

  38. M. D. Thomas and R. E. Amtower, Gas dilution apparatus for preparing reproducible dynamic gas mixtures in any desired concentration and complexity, J. Air Pollut. Control Assoc., 16 (1966) 618–623, doi: 10.1080/00022470.1966.10468526.

  39. R. S. Wright and R. W. Murdoch, Laboratory evaluation of gas dilution systems for analyzer calibration and calibration gas analysis, J. Air Waste Manag. Assoc., 44 (1994) 428–440, doi: 10.1080/1073161X.1994.10467265.

  40. W. A. Turner, J. D. Spengler and H. M. Frank, Development of a portable zero air system, J. Air Pollut. Control Assoc., 31 (1981) 882–884.

    Article  Google Scholar 

  41. J.C. Chow and J. G. Watson, New directions: beyond compliance air quality measurements, Atmos. Environ., 42 (2008) 5166–5168. doi:10.1016/j.atmosenv.2008.05.004.

    Article  ADS  Google Scholar 

  42. T. H. Bertram, R. C. Cohen, W. J. Thorn III and P. M. Chu, Consistency of ozone and nitrogen oxides standards at tropospherically relevant mixing ratios, J. Air Waste Manag. Assoc., 55 (2005) 1473–1479, doi: 10.1080/10473289.2005.10464740.

  43. E. Early, A. Thompson, C. Johnson, J. DeLuisi, P. Disterhoft, D. Wardle, E. Wu, W. F. Mou, J. Ehramjian, J. Tusson, T. Mestechkina, M. Beaubian, J. Gibson and D. Hayes, The 1996 North American Interagency intercomparison of ultraviolet monitoring spectroradiometers, J. Res. National Bureau Standards, 103 (1998a) 449–482.

    Google Scholar 

  44. E. Early, A. Thompson, C. Johnson, J. DeLuisi, P. Disterhoft, D. Wardle, E. Wu, W. F. Mou, Y. C. Sun, T. Lucas, T. Mestechkina, L. Harrison, J. Berndt and D. Hayes, The 1995 North American Interagency intercomparison of ultraviolet monitoring spectroradiometers, J. Res. National Bureau Standards, 103 (1998b) 15–62.

    Google Scholar 

  45. P. Ciccioli, M. Possanzini, V. Di Palo and A. Cecinato, Dynamic calibration of peroxyacetyl nitrate (PAN) analysers by annular denuder and ion-chromatographic techniques, Atmos. Environ., 26A (1992) 1513–1518.

    Article  ADS  Google Scholar 

  46. E. O. Edney, J. W. Spence and P. L. Hanst, Synthesis and thermal stability of peroxy alkyl nitrates, J. Air Pollut. Control Assoc., 29 (1979) 741–743.

    Article  Google Scholar 

  47. D. Grosjean, K. K. Fung, J. C. Collins, J. F. Harrison and E. Breitung, Portable generator for on-site calibration of peroxyacetyl nitrate analyzers, Anal. Chem., 56 (1984) 569.

    Article  Google Scholar 

  48. M. W. Holdren and C. W. Spicer, Field compatible calibration procedure for peroxyacetyl nitrate, Environ. Sci. Technol., 18 (1984) 113–116.

    Article  ADS  Google Scholar 

  49. T. Krognes, D. Danalatos, S. Glavas, P. Collin, G. Toupance, J. C. T. Hollander, R. Schmitt, P. Oyola, R. Romero, P. Ciccioli, V. Dipalo, A. Cecinato, R. F. Patier, M. T. Bomboi, J. Rudolph, K. P. Muller, W. Schrimpf, Y. Libert and H. Geiss, Interlaboratory calibration of peroxyacetyl nitrate liquid standards, Atmos. Environ., 30 (1996) 991–996.

    Article  ADS  Google Scholar 

  50. W. A. Lonneman, J. J. Bufalini and G. R. Namie, Calibration procedure for PAN based on its thermal decomposition in the presence of nitric oxide, Environ. Sci. Technol., 16 (1982) 655.

    Article  ADS  Google Scholar 

  51. ASTM, ASTM D3609-00(2010: Standard practice for calibration techniques using permeation tubes. Prepared by American Society for Testing Materials International, Conshohocken, PA, (2005), http://www.astm.org/Standards/D3609.htm.

  52. J. Brito and A. Zahn, An unheated permeation device for calibrating atmospheric VOC measurements, Atmos. Meas. Tech., 4 (2011) 2143–2152.

    Article  Google Scholar 

  53. L. Gameson, G. C. Rhoderick and F. R. Guenther, Preparation of accurate, low-concentration gas cylinder standards by cryogenic trapping of a permeation tube gas stream, Anal. Chem., 84 (2012) 2857–2861.

    Article  Google Scholar 

  54. Y. Kanda, M. Taira, K. Chimura, T. Takano and M. Sawabe, A microporous membrane-based continuous generation system for trace-level standard mixtures of atmospheric gases, Anal. Sci., 21 (2005) 629–634.

    Article  Google Scholar 

  55. K. H. Kim, J. Susaya, J. Cho and D. Parker, The combined application of impinger system and permeation tube for the generation of volatile organic compound standard gas mixtures at varying diluent flow rates, Sensors, 12 (2012) 10964–10979.

    Article  Google Scholar 

  56. D. Knopf, Continuous dynamic-gravimetric preparation of calibration gas mixtures for air pollution measurements, Accredit. Qual. Assur., 6 (2001) 113–119.

    Article  Google Scholar 

  57. P. C. Maria, J. F. Gal, M. Balza, E. Pere-Trepat, S. Tumbiolo and J. M. Couret, Using thermogravimetry for weight loss monitoring of permeation tubes used for generation of trace concentration gas standards, Anal. Chem., 74 (2002) 305–307.

    Article  Google Scholar 

  58. G. D. Mitchell, W. D. Dorko and P. A. Johnson, Long-term stability of sulfur dioxide permeation tube standard reference materials, Fresenius J. Anal. Chem., 344 (1992a) 229–233.

    Article  Google Scholar 

  59. W. J. Mitchell, A. P. Hines, J. A. Bowen, O. L. Dowler and W. F. Barnard, Simple systems for calibrating and auditing SO2 monitors at remote sites, Atmos. Environ. A Gen. Top., 26 (1992a) 191–194.

    Article  ADS  Google Scholar 

  60. J. A. Neuman, T. B. Ryerson, L. G. Huey, R. Jakoubek, J. B. Nowak, C. Simons and F. C. Fehsenfeld, Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption, Environ. Sci. Technol., 37 (2003) 2975–2981.

    Article  ADS  Google Scholar 

  61. A. E. O’Keeffe and G. C. Ortman, Primary standards for trace gas analysis, Anal. Chem., 38 (1966) 760–763.

    Article  Google Scholar 

  62. L. R. M. Pitombo and A. A. Cardoso, Standard gas mixture production based on the diffusion method, Int. J. Environ. Anal. Chem., 39 (1990) 349–360.

    Article  Google Scholar 

  63. F. P. Scaringelli, A. A. Frey and B. E. Saltzman, Evaluation of Teflon permeation tubes for use with sulfur dioxide, AIHA J., 28 (1967) 260.

    Article  Google Scholar 

  64. F. P. Scaringelli, A. E. O’Keefe, E. Rosenberg and J. P. Bell, Preparation of known concentrations of gases and vapors with permeation devices calibrated gravimetrically, Anal. Chem., 42 (1970) 871–876.

    Article  Google Scholar 

  65. H. B. Singh, L. Salas, D. Lillian, R. R. Arnts and A. Appleby, Generation of accurate halocarbon primary standards with permeation tubes, Environ. Sci. Technol., 11 (1977) 511–513.

    Article  ADS  Google Scholar 

  66. J. P. Spinhirne and J. A. Koziel, Generation and calibration of standard gas mixtures for volatile fatty acids using permeation tubes and solid-phase microextraction, Trans. ASAE, 46 (2003) 1639–1646.

    Article  Google Scholar 

  67. J. Susaya, K. H. Kim, J. Cho and D. Parker, The controlling effect of temperature in the application of permeation tube devices in standard gas generation, J. Chromatogr. A, 1225 (2012) 8–16.

    Article  Google Scholar 

  68. J. Susaya, K. H. Kim, J. W. Cho and D. Parker, The use of permeation tube device and the development of empirical formula for accurate permeation rate, J. Chromatogr. A, 1218 (2011) 9328–9335.

    Article  Google Scholar 

  69. U. R. Thorenz, M. Kundel, L. Muller and T. Hoffmann, Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point, Anal. Bioanal. Chem., 404 (2012) 2177–2183.

    Article  Google Scholar 

  70. L. Torres, J. Mathieu and M. Frikha, Stabilization of a standard gas mixture generator with diffusion tubes, Chromatographia, 14 (1981) 712–713.

    Article  Google Scholar 

  71. S. Tumbiolo, L. Vincent, J. F. Gal and P. C. Maria, Thermogravimetric calibration of permeation tubes used for the preparation of gas standards for air pollution analysis, Analyst, 130 (2005) 1369–1374.

    Article  ADS  Google Scholar 

  72. R. A. Washenfelder, C. M. Roehl, K. A. McKinney, R. R. Julian and P. O. Wennberg, A compact, lightweight gas standards generator for permeation tubes, Rev. Sci. Instrum., 74 (2003) 3151–3154.

    Article  ADS  Google Scholar 

  73. B. Zabiegala, M. Partyka, T. Grecki and J. Namiesnik, Application of the chromatographic retention index system for the estimation of the calibration constants of permeation passive samplers with polydimethylsiloxane membranes, J. Chromatogr. A, 1117 (2006) 19–30.

    Article  Google Scholar 

  74. A. Fick, Ueber diffusion, Annalen der Physik, 170 (1855) 59–86, doi: 10.1002/andp.18551700105/pdf.

  75. J. G. Watson, B. J. Turpin and J. C. Chow, The measurement process: precision, accuracy, and validity. In: B. S. Cohen, C. S. J. McCammon (eds), Air Sampling Instruments for Evaluation of Atmospheric Contaminants, Ninth Edition, 9th. American Conference of Governmental Industrial Hygienists, Cincinnati, pp. 201–216, (2001).

  76. M. Benkova, S. Makovnik, I. Mikulecky and V. Zamecnik, Bell prover—calibration and monitoring of time stability, MAPAN-Journal of Metrology Society of India, 26 (2011) 165–171.

    Article  Google Scholar 

  77. H. M. Choi, K. A. Park, Y. K. Oh and Y. M. Choi, Uncertainty evaluation procedure and intercomparison of bell provers as a calibration system for gas flow meters, Flow Meas. Instrum., 21 (2010) 488–496.

    Article  Google Scholar 

  78. B. Pavlovic, H. Kozmar and M. Sunic, A new system for the calibration of gas flow meters, Trans. Famena, 33 (2009) 37–46.

    Google Scholar 

  79. F. W. Ruegg and F. C. Ruegg, Dynamics of the bell prover, 2, J. Res. National Bureau Standards, 95 (1990) 15–31, http://nvlpubs.nist.gov/nistpubs/jres/095/jresv95n1p15_A1b.pdf.

  80. T. Stasic, N. Degiuli and L. G. Bermanec, Experimental characterisation of a bell prover, Strojarstvo, 49 (2007) 333–342.

    Google Scholar 

  81. C. M. Su, W. T. Lin and S. Masri, Establishment and verification of a primary low-pressure gas flow standard at NIMT, MAPAN-Journal of Metrology Society of India, 26 (2011) 173–186.

    Article  Google Scholar 

  82. I. C. Clark, R. Zhang, Z. Pan, B. R. Brown, J. Ambuel and M. Delwiche, Development of a low-flow meter for measuring gas production in bioreactors, Trans. Asabe, 54 (2011) 1959–1964.

    Article  Google Scholar 

  83. S. Lashkari and B. Kruczek, Development of a fully automated soap flowmeter for micro flow measurements, Flow Meas. Instrum., 19 (2008) 397–403.

    Article  Google Scholar 

  84. M. Scott, Measuring the lowest flows with a gas bubble meter, Control Instrum., 24 (1992) 18.

    Google Scholar 

  85. J. Waaben, D. B. Stokke and M. M. Brinklov, Accuracy of gas flowmeters determined by the bubble meter method, Br. J. Anaesth., 50 (1978) 1251–1256.

    Article  Google Scholar 

  86. D. Cornelius, Roots meter modules, Gas Eng. Manag., 37 (1997) 27.

    Google Scholar 

  87. F. A. Smith and J. H. Eiseman, Saturation of gases by laboratory wet test meter, J. Res. National Bureau Stand., 23 (1939) 345–353, http://nvlpubs.nist.gov/nistpubs/jres/23/jresv23n3p345_A1b.pdf.

  88. B. G. Fritz, Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network, Health Phys., 96 (2009) S69–S75.

    Article  Google Scholar 

  89. H. S. Chahal and D. C. Hunter, High volume air sampler: an orifice meter as a substitute for a rotameter, J. Air Pollut. Control Assoc., 26 (1976) 1171–1172.

    Article  Google Scholar 

  90. M. Bogema and P. L. Monkmeyer, The quadrant edge orifice—a fluid meter for low Reynolds numbers, J. Basic Eng., 82 (1960) 729.

    Article  Google Scholar 

  91. D. L. Brenchley, Note on the ‘use of watch jewels as critical flow orifices’, J. Air Pollut. Control Assoc., 22 (1972) 967.

    Article  Google Scholar 

  92. M. Carter, W. Johansen and C. Britton, Performance of a gas flow meter calibration system utilizing critical flow venturi standards, MAPAN-Journal of Metrology Society of India, 26 (2011) 247–254.

    Article  Google Scholar 

  93. S. C. Chen, C. J. Tsai, C.H. Wu, D. Y. H. Pui, A. A. Onischuk and V. V. Karasev, Particle loss in a critical orifice, J. Aerosol Sci., 38 (2007) 935–949.

    Article  Google Scholar 

  94. S. R. DeNardi and C. L. Sacco, A demountable critical orifice, J. Air Pollut. Control Assoc., 28 (1978) 603–604.

    Article  Google Scholar 

  95. C. H. Li and A. Johnson, Bilateral comparison between NIM’s and NIST’s gas flow standards, MAPAN-Journal of Metrology Society of India, 26 (2011) 211–224.

    Article  Google Scholar 

  96. J. P. Lodge Jr, J. B. Pate, B. E. Ammons and G. A. Swanson, The use of hypodermic needles as critical orifices in air sampling, J. Air Pollut. Control Assoc., 16 (1966) 197.

    Article  Google Scholar 

  97. T. Povey and P. F. Beard, A novel experimental technique for accurate mass flow rate measurement, Flow Meas. Instrum., 19 (2008) 251–259.

    Article  Google Scholar 

  98. P. Urone and R. C. Ross, Pressure change effects on hypodermic needle critical orifice air flow rates, Environ. Sci. Technol., 13 (1979a) 351–353.

    Article  ADS  Google Scholar 

  99. X. L. Wang and Y. H. Zhang, Development of a critical airflow venturi for air sampling, J. Agric. Eng. Res., 73 (1999) 257–264.

    Article  Google Scholar 

  100. J. B. Wedding, M. A. Weigand, Y. J. Kim, D. L. Swift and J. P. Lodge, A critical flow device for accurate PM10 sampling and correct indiction of PM10 dosage to the thoracic region of the respiratory tract, J. Air Pollut. Control Assoc., 37 (1987) 254–258.

    Google Scholar 

  101. N. J. Zimmerman and P. C. Reist, The critical orifice revisited—a novel low pressure drop critical orifice, AIHA J., 45 (1984) 340–344.

    Article  Google Scholar 

  102. C. C. Feng, W. T. Lin and C. T. Yang, Laminar flow meter with straight glass capillary, MAPAN-Journal of Metrology Society of India, 26 (2011) 237–245.

    Article  Google Scholar 

  103. ASTM, ASTM D3195/D3195M-10: standard practice for rotameter calibration. Prepared by American Society for Testing Materials International, Conshohocken, PA, (2004), http://www.astm.org/Standards/D3195.htm.

  104. K. J. Caplan, Rotameter corrections for gas density, AIHA J., 46 (1985) B10-&.

  105. Y. S. Mironov and N. I. Freidgei, Effect of rotameter tilting on its readings, Meas. Tech. Ussr, 15 (1972) 568–570.

    Article  Google Scholar 

  106. H. M. Motit and I. Nistor, Expansion of rotameter application by use of the conversion curves—calculation and automatic drawing of the flow scale, Revista de Chimie, 39 (1988) 698–705.

    Google Scholar 

  107. P. Urone and R. C. Ross, Pressure change effects on rotameter air flow rates, Environ. Sci. Technol., 13 (1979b) 732–734.

    Article  ADS  Google Scholar 

  108. C. Veillon and J. Y. Park, Correct procedures for calibration and use of rotameter-type gas flow measuring devices, Anal. Chem., 42 (1970) 684.

    Article  Google Scholar 

  109. J. Wojtkowiak and C. O. Popiel, Viscosity correction factor for rotameter, J. Fluids Eng. Trans. Asme, 118 (1996) 569–573.

    Article  Google Scholar 

  110. W. Q. Shu, Modelling of the turbine flow meter, Technisches Messen, 67 (2000) 264–266.

    Google Scholar 

  111. I. Wolf and R. L. Carpenter, A simple automatic variable flow controller, J. Air Pollut. Control Assoc., 32 (1982) 744–746, doi: 10.1080/00022470.1982.10465462.

    Google Scholar 

  112. J. H. Huijsing, A. L. C. Vandorp and P. J. G. Loos, Thermal mass-flow meter, J. Phys. E Sci. Instrum., 21 (1988) 994–997.

    Article  ADS  Google Scholar 

  113. S. A. Tison, A critical evaluation of thermal mass flow meters, J. Vac. Sci. Technol. A Vac. Surf. Films, 14 (1996) 2582–2591.

    Article  ADS  Google Scholar 

  114. J. B. Wedding, Errors in sampling ambient concentrations employing setpoint temperature compensated mass flow transducers, Atmos. Environ., 19 (1985) 1219–1222.

    Article  ADS  Google Scholar 

  115. M. J. T. Milton, G. M. Vargha and A. S. Brown, Gravimetric methods for the preparation of standard gas mixtures, Metrologia, 48 (2011) R1–R9. http://iopscience.iop.org/0026-1394/48/5/R01/pdf/0026-1394_48_5_R01.pdf.

  116. Y. Tohjima, T. Machida, T. Watai, I. Akama, T. Amari and Y. Moriwaki, Preparation of gravimetric standards for measurements of atmospheric oxygen and reevaluation of atmospheric oxygen concentration, J. Geophys. Res. Atmos., 110 (2005) D11.

    Google Scholar 

  117. R. F. Scherberger, G. P. Happ, F. A. Miller and D. W. Fassett, A dynamic apparatus for preparing air-vapor mixtures of known concentrations, AIHA J., 19 (1958) 494–498.

    Article  Google Scholar 

  118. K. J. Jardine, W. M. Henderson, T. E. Huxman and L. Abrell, Dynamic solution injection: a new method for preparing pptv–ppbv standard atmospheres of volatile organic compounds, Atmos. Meas. Tech., 3 (2010) 1569–1576.

    Article  Google Scholar 

  119. F. Bruner, C. Canulli and M. Possanzi, Coupling of permeation and exponential dilution methods for use in gas-chromatographic trace analysis, Anal. Chem., 45 (1973) 1790–1791.

    Article  Google Scholar 

  120. S. Greenhouse and F. Andrawes, Generation of gaseous standards using exponential dilution flasks in series, Anal. Chim. Acta., 236 (1990) 221–226.

    Article  Google Scholar 

  121. H. Nozoye, Exponential dilution flask, Anal. Chem., 50 (1978) 1727.

    Article  Google Scholar 

  122. J. J. Ritter and N. K. Adams, Exponential dilution as a calibration technique, Anal. Chem., 48 (1976) 612–619.

    Article  Google Scholar 

  123. J. M. Sedlak and K. F. Blurton, Comments on use of exponential dilution flask in calibration of gas analyzers, Anal. Chem., 48 (1976) 2020–2022.

    Article  Google Scholar 

  124. ISO, ISO 6145-8:2005: gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 8: diffusion method. Prepared by International Organization for Standardization, Geneva, Switzerland, (2005b), http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=36480.

  125. T. Kida, M. H. Seo, S. Kishi, Y. Kanmura and K. Shimanoe, Preparation and measurement of standard organic gases using a diffusion method and a NASICON-based CO2 sensor combined with a combustion catalyst, Anal. Methods, 3 (2011) 1887–1892.

    Article  Google Scholar 

  126. P. Konieczka, J. Namiesnik and J. F. Biernat, Generation of standard gaseous mixtures by thermal decomposition of surface compounds—standard mixtures of thiols, J. Chromatogr., 540 (1991) 449–455.

    Article  Google Scholar 

  127. J. G. Watson, J. C. Chow, J. L. Bowen, D. H. Lowenthal, S. V. Hering, P. Ouchida and W. Oslund, Air quality measurements from the Fresno Supersite, J. Air Waste Manag. Assoc., 50 (2000) 1321–1334, doi:10.1080/10473289.2000.10464184.

    Google Scholar 

  128. U.S.EPA, National ambient air quality standards for particulate matter: final rule, Fed. Regist., 62 (1997a) 38651–38760, http://www.epa.gov/ttn/amtic/files/cfr/recent/pmnaaqs.pdf.

  129. U.S.EPA, Revised requirements for designation of reference and equivalent methods for PM2.5 and ambient air surveillance for particulate matter—final rule, Fed. Regist., 62 (1997b) 38763–38854, http://www.epa.gov/ttnamti1/files/cfr/pm-mon.pdf.

  130. J. G. Watson, J. C. Chow, J. J. Shah and T. G. Pace, The effect of sampling inlets on the PM10 and PM15 to TSP concentration ratios, J. Air Pollut. Control Assoc., 33 (1983) 114–119, doi:10.1080/00022470.1983.10465552.

  131. J. B. Wedding and T. C. Carney, A quantitative technique for determining the impact of non-ideal ambient sampler inlets on the collected mass, Atmos. Environ., 17 (1983) 873–882.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith C. Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, J.G., Chow, J.C., Tropp, R.J. et al. Standards and Traceability for Air Quality Measurements: Flow Rates and Gaseous Pollutants. MAPAN 28, 167–179 (2013). https://doi.org/10.1007/s12647-013-0071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-013-0071-z

Keywords

Navigation