Skip to main content
Log in

Study on the Effect of Mn, Zn, and Sb on Undercooling Behavior of Sn-Ag-Cu Alloys Using Differential Thermal Analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Differential thermal analysis (DTA) has been conducted on directionally solidified near-eutectic Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC), SAC \(+\) 0.2 wt.%Sb, SAC \(+\) 0.2 wt.%Mn, and SAC \(+\) 0.2 wt.%Zn. Laser ablation inductively coupled plasma mass spectroscopy was used to study element partitioning behavior and estimate DTA sample compositions. Mn and Zn additives reduced the undercooling of SAC from 20.4\(^\circ \hbox {C}\) to \(4.9^\circ \hbox {C}\) and \(2^\circ \hbox {C}\), respectively. Measurements were performed at cooling rate of \(10^\circ \hbox {C}\) per minute. After introducing 200 ppm \(\hbox {O}_2\) into the DTA, this undercooling reduction ceased for SAC \(+\) Mn but persisted for SAC \(+\) Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)

  2. D. Lewis, S. Allen, M. Notis, and A. Scotch, J. Electron. Mater. 31, 161 (2002)

    Article  Google Scholar 

  3. M.E. Loomans and M.E. Fine, Metall. Mater. Trans. A 31, 1155 (2000)

    Article  Google Scholar 

  4. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)

    Article  Google Scholar 

  5. B. Vonnegut, J. Colloid Sci. 3, 563 (1948)

    Article  Google Scholar 

  6. K. Kelton, Solid State Phys. 45, 75 (1991)

    Article  Google Scholar 

  7. I.E. Anderson, J.W. Walleser, J.L. Harringa, F. Laabs, and A. Kracher, J. Electron. Mater. 38, 2770 (2009)

    Article  Google Scholar 

  8. Y.L. Gao, E. Zhuravlev, C.D. Zou, B. Yang, Q.J. Zhai, and C. Schick, Acta Thermochim. 482, 1 (2009)

    Article  Google Scholar 

  9. K.F. Kelton and A.K. Gangopadhyay, Powder Diffr. 20, 87 (2005)

    Article  Google Scholar 

  10. T. Itami, S. Munejiri, T. Masaki, H. Aoki, Y. Ishii, T. Kamiyama, Y. Senda, F. Shimojo, and K. Hoshino, Phys. Rev. B 67, 064201 (2003)

    Article  Google Scholar 

  11. L. Calderin, D.J. Gonzalez, L.E. Gonzalez, and J.M. Lopez, J. Chem. Phys. 129, 194506 (2008)

    Article  Google Scholar 

  12. A. Di Cicco, A. Trapananti, E. Principi, S. De Panfilis, and A. Filipponi, Appl. Phys. Lett. 89, 221912 (2006)

    Article  Google Scholar 

  13. B. Arfaei, N. Kim, and E.J. Cotts, J. Electron. Mater. 41, 362 (2012)

    Article  Google Scholar 

  14. L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 33, 1429 (2004)

    Article  Google Scholar 

  15. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008)

    Article  Google Scholar 

  16. S.-K. Seo, S.K. Kang, M.G. Cho, D.-Y. Shih, and H.M. Lee, J. Electron. Mater. 38, 2461 (2009)

    Article  Google Scholar 

  17. J. Sylvestre and A. Blander, J. Electron. Mater. 37, 1618 (2008)

    Article  Google Scholar 

  18. J.A. Rayne and B. Chandrasekhar, Phys. Rev. 120, 1658 (1960)

    Article  Google Scholar 

  19. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregated Properties: A Handbook (Cambridge: MIT Press, 1971)

    Google Scholar 

  20. D.G. House and E.V. Vernon, Br. J. Appl. Phys. 11, 254 (1960)

    Article  Google Scholar 

  21. H.B. Huntington, Solid State Phys. 7, 213 (1958)

    Article  Google Scholar 

  22. R.F.S. Hearmon, Adv. Phys. 5, 323 (1956)

    Article  Google Scholar 

  23. W.P. Mason and H.E. Bommel, J. Acoust. Soc. Am. 28, 930 (1956)

    Article  Google Scholar 

  24. P.W. Bridgman, Proc. Natl. Acad. Sci. USA, 10, 411 (1924)

    Article  Google Scholar 

  25. M. Lu, D.-Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008)

    Article  Google Scholar 

  26. K. Lee, K.-S. Kim, and K. Suganuma, J. Mater. Res. 26, 2624 (2011)

    Article  Google Scholar 

  27. J. Song, C. Huang, and H. Chuang, J. Electron. Mater. 35, 2154 (2006)

    Article  Google Scholar 

  28. I.E. Anderson, J. Walleser, and J.L. Harringa, J. Mater. 59, 38 (2007)

    Google Scholar 

  29. T. Motegi and A. Ohno, J. Jpn. Inst. Met. 37, 777 (1973)

    Article  Google Scholar 

  30. D.C. Lin, T.S. Srivatsan, G. Wang, and R. Kovacevic, Powder Technol. 166, 38 (2006)

    Article  Google Scholar 

  31. G. Wilde, J.L. Sebright, and J.H. Perepezko, Acta Mater. 54, 4759 (2006)

    Article  Google Scholar 

  32. D. Swenson, J. Mater. Sci. Mater. Electron. 18, 39 (2007)

    Article  Google Scholar 

  33. R.J. Schaefer and D. J. Lewis, Met. Mater. Trans. A 36A, 2775 (2005)

    Article  Google Scholar 

  34. S.L. Allen, M.R. Notis, R.R. Chromik, R.P. Vinci, D.J. Lewis, and R. Schaefer, J. Mater. Res. 19, 1425 (2004)

    Article  Google Scholar 

  35. D. Lewis, M. Notis, and A. Grusd, J. Phase Equilib. 21, 425 (2000)

    Article  Google Scholar 

  36. B.N. Taylor and C.E. Kuyatt, NIST Technical Note 1297 (National Institute of Standards and Technology, USA, 1994)

    Google Scholar 

  37. I.E. Jackson, Metallography 14, 107 (1981)

    Article  Google Scholar 

  38. B.J. Fryer, S.E. Jackson, and H.P. Longerich, Can. Mineral. 33, 303 (1995)

    Google Scholar 

  39. Alpha. Alpha® Vaculoy SAC300,305,350,400,405 lead free wave solder alloy. Technical report, South Plainfield, NJ (2010)

  40. I.E. Anderson, A. Boesenberg, J. Harringa, D. Riegner, A. Steinmetz, and D. Hillman, J. Electron. Mater. 41, 390 (2012)

    Article  Google Scholar 

  41. H.T. Li, Y. Wang, and Y. Fan, Acta Mater. 60, 1528 (2012)

    Article  Google Scholar 

  42. L.C. Tsao and S.Y. Chang, Mater. Des. 31, 990 (2010)

    Article  Google Scholar 

  43. X. Liu, M. Huang, C.M.L. Wu, and L. Wang, J. Mater. Sci. Mater. Electron. 21, 1046 (2010)

    Article  Google Scholar 

  44. Y. Dong and F. DiSalvo, Acta Crystallogr. E 61, 282 (2005)

    Article  Google Scholar 

  45. B.T. Truong, M.T. Nguyen, and M.T. Nguyen, Chem. Phys. 388, 1 (2011)

    Article  Google Scholar 

  46. S. Neukermans, X. Wang, N. Veldeman, E. Janssens, R.E. Silverans, and P. Lievens, Int. J. Mass Spectrom. 252, 145 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Lewis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Reeves, B., Lenz, B. et al. Study on the Effect of Mn, Zn, and Sb on Undercooling Behavior of Sn-Ag-Cu Alloys Using Differential Thermal Analysis. J. Electron. Mater. 46, 6319–6332 (2017). https://doi.org/10.1007/s11664-017-5634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5634-2

Keywords

Navigation