Skip to main content
Log in

First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1−x (Z = B, Al, Ga, In)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the structural and electronic properties of the BAs x Sb 1x , AlAs x Sb 1x , GaAs x Sb 1x and InAs x Sb 1x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard’s law where our results are in agreement with the available data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kalt, Optical Properties of III–V Semiconductors, ed. H.-J. Queisser (Berlin: Springer, 1996).

    Chapter  Google Scholar 

  2. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  Google Scholar 

  3. A. Belabbes, A. Zaoui, and M. Ferhat, Mater. Sci. Eng. B 137, 210 (2007).

    Article  Google Scholar 

  4. F. El Haj Hassan and H. Akbarzadeh, Mater. Sci. Eng. B 121, 171 (2005).

    Article  Google Scholar 

  5. B. Bouhafs, H. Aourag, and M. Certier, J. Phys.: Condens. Matter 12, 5656 (2000).

    Google Scholar 

  6. S. Bhargava, H.-R. Blank, E. Hall, M.A. Chin, H. Kroemer, and V. Narayanamurti, Appl. Phys. Lett. 74, 1135 (1999).

    Article  Google Scholar 

  7. H.-R. Blank, S. Mathis, E. Hall, S. Bhargava, A. Behres, M. Heuken, H. Kroemer, and V. Narayanamurti, J. Cryst. Growth 187, 18 (1998).

    Article  Google Scholar 

  8. F. El Haj Hassan, A. Breidi, S. Ghemid, B. Amrani, H. Meradji, and O. Pagès, J. Alloys Compd. 499, 80 (2010).

    Article  Google Scholar 

  9. P.J.P. Tang, M.J. Pullin, S.J. Chung, C.C. Phillips, R.A. Stradling, A.G. Norman, Y.B. Li, and L. Hart, Semicond. Sci. Technol. 10, 1177 (1995).

    Article  Google Scholar 

  10. W. Dobbelaere, J. Deboeck, P. Heremans, R. Mertens, G. Borghs, W. Luyten, and J. Van Landuyt, Appl. Phys. Lett. 60, 3256 (1992).

    Article  Google Scholar 

  11. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.C. Allan, Comput. Mater. Sci. 25, 478 (2002).

    Article  Google Scholar 

  12. K. Strössner, S. Ves, C.K. Kim, and M. Cardona, Phys. Rev. B 33, 4044 (1986).

    Article  Google Scholar 

  13. H. Landolt and R. Borstein, Numerical Data and Functional Relationships in Science and Technology, ed. O. Madelung and M. Schulz, New Series, Group III, vol. 22 Pt. (Berlin: Springer, 1987).

  14. S. Hussain, S. Dalui, R.K. Roy, and A.K. Pal, J. Phys. D Appl. Phys. 39, 2053 (2006).

    Article  Google Scholar 

  15. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  16. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  17. C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).

    Article  Google Scholar 

  18. S. Bounab, Z. Charifi, and N. Bouarissa, Phys. B 324, 72 (2002).

    Article  Google Scholar 

  19. A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).

    Article  Google Scholar 

  20. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  Google Scholar 

  21. J.P. Perdew, and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

    Article  Google Scholar 

  22. L.J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).

    Article  Google Scholar 

  23. L.J. Sham and M. Schlüter, Phys. Rev. B 32, 3883 (1985).

    Article  Google Scholar 

  24. A. Ya, Handbook Series on Semiconductor Parameters, Ternary and Quaternary III–V Compounds, ed. M. Levinshtein, S. Rumyantsev, and M. Shur (Singapore: World Scientific, 1999), p. 111.

    Google Scholar 

  25. B.T. Liou, S.H. Yen, and Y.K. Kuo, Proceedings on SPIE 6121 (2006). doi:10.1117/12.644464.

  26. O. Madelung, Semiconductors Basic Data, 2nd ed. (Berlin: Springer, 1996), pp. 71–172.

    Book  Google Scholar 

  27. F. El Haj Hassan. Phys. Status Solidi B 242, 3129 (2005).

    Article  Google Scholar 

  28. P.E. Blochl, O. Jepsen, and O.K. Anderson, Phys. Rev. B 49, 1623 (1994).

    Article  Google Scholar 

  29. D.L. Rode, Semiconductors and Semimetals, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1975), p. 1.

    Google Scholar 

  30. Z. Charifi, F. El Haj Hassan, H. Baaziz, Sh. Khosravizadeh, S.J. Hashemifar, and H. Akbarzadeh, J. Phys.: Condens. Matter 17, 44 (2005).

    Google Scholar 

  31. N.M. Ravindra, P. Ganapathy, and J. Choi, Infrared Phys. Technol. 50, 21 (2007).

    Article  Google Scholar 

  32. M.A. Ghebouli, B. Ghebouli, A. Bouhemadou, M. Fatmi, and K. Bouamama, J. Alloys Compd. 509, 144 (2011).

    Article  Google Scholar 

  33. T.S. Moss, Phys. Status Solidi B 131, 415 (1985).

    Article  Google Scholar 

  34. N.M. Ravindra, S. Auluck, and V.K. Srivastava, Phys. Status Solidi B 93, k155 (1979).

    Article  Google Scholar 

  35. P.J.L. Herve and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994).

    Article  Google Scholar 

  36. S.K. Tripathy, Opt. Mater. 46, 244 (2015).

    Article  Google Scholar 

  37. T.L. Chu and A.E. Hyslop, J. Electrochem. Soc. 121, 412 (1974).

    Article  Google Scholar 

  38. O. Madelung, Semiconductors Basic Data, 3rd ed. (Berlin: Springer, 2004), pp. 71–172.

    Google Scholar 

  39. S.M. Ku, J. Electrochem. Soc. 113, 813 (1966).

  40. M. Ferhat, B. Bouhafs, A. Zaoui, and H. Aourag, J. Phys.: Condens. Matter 10, 7995 (1998).

    Google Scholar 

  41. I.H. Nwigboji, Y. Malozovsky, L. Franklin, and D. Bagayoko, J. Appl. Phys. 120, 145701 (2016).

    Article  Google Scholar 

  42. S. Kacimi, H. Mehnane, and A. Zaoui, J. Alloys Compd. 587, 451 (2014).

    Article  Google Scholar 

  43. S.E. Stokowski and D.D. Sell, Phys. Rev. B 5, 1636 (1972).

    Article  Google Scholar 

  44. Y. Yao, D. König, and M. Green, Sol. Energy Mater. Sol. Cells 111, 123 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bounab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounab, S., Bentabet, A., Bouhadda, Y. et al. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1−x (Z = B, Al, Ga, In). J. Electron. Mater. 46, 4805–4814 (2017). https://doi.org/10.1007/s11664-017-5425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5425-9

Keywords

Navigation