Skip to main content

Advertisement

Log in

DFT Investigation on the Electronic and Water Adsorption Properties of Pristine and N-Doped TiO2 Nanotubes for Photocatalytic Water Splitting Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Experimental studies have shown the production of hydrogen through a photocatalytic water splitting process using a titanium dioxide nanotube (TiO2NT) as a photoelectrode. In this study, a theoretical model of pristine and nitrogen-doped TiO2NT based on a TiO2 anatase (101) surface is presented. Spin unrestricted density functional theory calculations were performed to provide a detailed description of the geometries, electronic properties, and adsorption of water (H2O) on pristine and N-doped TiO2NT. The calculations show that doping with N will improve the photocatalytic properties of TiO2NT in two ways: First, the energy barrier of the dissociation reaction of water into hydroxyl radical and hydrogen atom is reduced; and second, the defect-induced states above the valence band lowers the band gap which will result in enhanced visible-light-driven photoactivity. Based on the position of the Fermi level relative to the defect induced energy levels, an optimal doping concentration of around 1.4% is proposed, which is in good agreement with experimental results. This study provides an atomic/molecular level understanding of the photocatalytic water splitting process and may serve as a groundwork for the rational design of more efficient photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Andrews and B. Shabani, Int. J. Hydrog. Energy (2012). doi:10.1016/j.ijhydene.2011.09.137.

    Google Scholar 

  2. A. Fujishima and K. Honda, Nature (1972). doi:10.1038/238037a0.

    Google Scholar 

  3. F. Xiao and B. Liu, Heterog. Photocatal. (2015). doi:10.1007/978-3-662-48719-8_5.

    Google Scholar 

  4. K. Zhu, T.B. Vinzant, N.R. Neale, and A.J. Frank, Nano Lett. (2007). doi:10.1021/nl072145a.

    Google Scholar 

  5. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey, J. Mater. Res. (2001). doi:10.1557/jmr.2001.0457.

    Google Scholar 

  6. R. Vitiello, J. Macak, A. Ghicov, H. Tsuchiya, L. Dick, and P. Schmuki, Electrochem. Commun. (2006). doi:10.1016/j.elecom.2006.01.023.

    Google Scholar 

  7. R. Beranek, J.M. Macak, M. Gärtner, K. Meyer, and P. Schmuki, Electrochim. Acta (2009). doi:10.1016/j.electacta.2008.10.063.

    Google Scholar 

  8. Y. Su, X. Zhang, M. Zhou, S. Han, and L. Lei, J. Photochem. Photobiol. A (2008). doi:10.1016/j.jphotochem.2007.08.002.

    Google Scholar 

  9. L. Sang, Z. Zhang, and C. Ma, Int. J. Hydrog. Energy (2011). doi:10.1016/j.ijhydene.2011.01.071.

    Google Scholar 

  10. X. Pan, Q. Cai, W. Chen, G. Zhuang, X. Li, and J. Wang, Comput. Mater. Sci. (2013). doi:10.1016/j.commatsci.2012.09.006.

    Google Scholar 

  11. H. Liu and K. Tan, Comput. Theor. Chem. (2012). doi:10.1016/j.comptc.2012.04.004.

    Google Scholar 

  12. W. Li, Phys. Status Solidi RRL (2014). doi:10.1002/pssr.201409365.

    Google Scholar 

  13. S. Piskunov, O. Lisovski, J. Begens, D. Bocharov, Y.F. Zhukovskii, M. Wessel, and E. Spohr, J. Phys. Chem. C (2015). doi:10.1021/acs.jpcc.5b03691.

    Google Scholar 

  14. O. Lisovski, A. Chesnokov, S. Piskunov, D. Bocharov, Y.F. Zhukovskii, M. Wessel, and E. Spohr, Mater. Sci. Semicond. Process. (2016). doi:10.1016/j.mssp.2015.09.003.

    Google Scholar 

  15. Q. Xie, Q. Meng, G. Zhuang, J. Wang, and X. Li, Int. J. Quantum Chem. (2011). doi:10.1002/qua.23269.

    Google Scholar 

  16. W. Kohn and L.J. Sham, Phys. Rev. (1965). doi:10.1103/physrev.140.a1133.

    Google Scholar 

  17. K.I. Rojas, A.R.C. Villagracia, and N.B. Arboleda Jr, Mater.␣Res. Express (2016). doi:10.1088/2053-1591/3/11/115015.

    Article  Google Scholar 

  18. J.I.G. Enriquez and A.R.C. Villagracia, Int. J. Hydrog. Energy (2016). doi:10.1016/j.ijhydene.2016.06.035.

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. (1996). doi:10.1103/physrevlett.77.3865.

    Google Scholar 

  20. B. Delley, J. Phys. Chem. (1996). doi:10.1021/jp952713n.

    Google Scholar 

  21. B. Delley, Phys. Rev. B (2002). doi:10.1103/physrevb.66.155125.

    Google Scholar 

  22. H.J. Monkhorst and J.D. Pack, Phys. Rev. B (1976). doi:10.1103/physrevb.13.5188.

    Google Scholar 

  23. J.P. Perdew, Int. J. Quantum Chem. (1986). doi:10.1002/qua.560300314.

    Google Scholar 

  24. C. Kittel, Introduction to Solid State Physics, vol. 162 (New York: Wiley, 1966), pp. 205–208.

  25. T. Lindgren, J.M. Mwabora, E. Avendaño, J. Jonsson, A. Hoel, C. Granqvist, and S. Lindquist, J. Phys. Chem. B (2003). doi:10.1021/jp027345j.

    Google Scholar 

  26. R. Asahi, Science (2001). doi:10.1126/science.1061051.

    Google Scholar 

  27. H. Cheng, Y. Chen, W. Wu, and C. Hsu, Mater. Sci. Eng. B (2011). doi:10.1016/j.mseb.2011.02.001.

    Google Scholar 

  28. J. Rossmeisl, A. Logadottir, and J. Nørskov, Chem. Phys. (2005). doi:10.1016/j.chemphys.2005.05.038.

    Google Scholar 

  29. Q. Meng, J. Wang, Q. Xie, H. Dong, and X. Li, Catal. Today (2011). doi:10.1016/j.cattod.2010.11.086.

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the Department of Science and Technology of the Philippines for their financial support. This study would not be possible without the assistance from the Physics of Department of De La Salle University through the Computational Materials Design Research Group and the High Performance Computing Laboratory of De La Salle University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Rey C. Villagracia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enriquez, J.I.G., Moreno, J.L.V., David, M.Y. et al. DFT Investigation on the Electronic and Water Adsorption Properties of Pristine and N-Doped TiO2 Nanotubes for Photocatalytic Water Splitting Applications. J. Electron. Mater. 46, 3592–3602 (2017). https://doi.org/10.1007/s11664-017-5342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5342-y

Keywords

Navigation