Skip to main content

Effect of Nitrogen Doping on Optoelectronic Properties of TiO2 Anatase Model for Solar Hydrogen Production: A DFT + U Approach

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference of New Energy

Abstract

To deal with the energy crisis and environmental challenges, solar hydrogen generation via photocatalytic water-splitting technique is clean and green energy technology. Titanium dioxide (TiO2) plays a significant role as a photocatalyst to absorb solar energy for photocatalytic H2 production. However, the development of TiO2 as an efficient photocatalyst is always a challenging task due to its wide bandgap (TiO2 anatase ~3.2 eV) and meager visible light absorption. Herein, this work presents the computationally designed nitrogen (N)-doped TiO2 anatase models simulated via periodic density functional theory (DFT) calculations over large supercells. Hubbard’s modified DFT calculations were adopted through Perdew–Burke–Ernzerhof supported generalized gradient approximation (GGA + PBE + U) functional to simulate the optoelectronic properties of the designed models. The results reveal that N-doped TiO2 anatase model exhibits a substantial bandgap reduction up to 2.34 eV as endorsed by the electronic structure analysis. The bandgap reduction commences from the provision of N 2p states to the O 2p and Ti 3d states of TiO2 in VB region and their presence as induced mid-gap states in the bandgap. The reduction in bandgap energy of the TiO2 significantly boosts the visible light absorption under solar irradiation. Thus overall, the N-doping could be a promising non-metal doping approach for TiO2 anatase photocatalyst for the solar H2 production process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Weng, H. Zhang, A.O. Govorov, M. Ouyang, Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 5(1), 1–10 (2014)

    Article  Google Scholar 

  2. M. Schiemann, B. Böhm, R. Chirone, O. Senneca, J. Ströhle, K. Umeki, M. Vujanovic, Technical solutions to foster the global energy transition: special issue on clean fuel conversion technologies for carbon dioxide and pollutant reduction, in Book Technical Solutions to Foster the Global Energy Transition: Special Issue on Clean Fuel Conversion Technologies for Carbon Dioxide and Pollutant Reduction, vol. 23 (2022), p. 111770

    Google Scholar 

  3. S. Reghunath, D. Pinheiro, S.D. KR, A review of hierarchical nanostructures of TiO2: advances and applications. Appl. Surf. Sci. Adv. 3, 100063 (2021)

    Google Scholar 

  4. J. Nowotny, T. Bak, M. Nowotny, L. Sheppard, Titanium dioxide for solar-hydrogen I. Functional properties. Int. J. Hydrog. Energy 32(14), 2609–2629 (2007)

    Article  CAS  Google Scholar 

  5. K. Batalović, N. Bundaleski, J. Radaković, N. Abazović, M. Mitrić, R.A. Silva, M. Savić, J. Belošević-Čavor, Z. Rakočević, C.M. Rangel, Modification of N-doped TiO2 photocatalysts using noble metals (Pt, Pd)—a combined XPS and DFT study. Phys. Chem. Chem. Phys. 19(10), 7062–7071 (2017)

    Article  Google Scholar 

  6. A. Giannakas, M. Antonopoulou, C. Daikopoulos, Y. Deligiannakis, I. Konstantinou, Characterization and catalytic performance of B-doped, B-N co-doped and B–N–F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl. Catal. B 184, 44–54 (2016)

    Article  CAS  Google Scholar 

  7. M. Islam, J. Podder, The role of Al and Co co-doping on the band gap tuning of TiO2 thin films for applications in photovoltaic and optoelectronic devices. Mater. Sci. Semicond. Process. 121, 105419 (2021)

    Article  CAS  Google Scholar 

  8. H. Chen, X. Li, R. Wan, S. Kao-Walter, Y. Lei, C. Leng, A DFT study on modification mechanism of (N, S) interstitial co-doped rutile TiO2. Chem. Phys. Lett. 695, 8–18 (2018)

    Article  CAS  Google Scholar 

  9. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystal. Mater. 220(5–6), 567–570 (2005)

    Google Scholar 

  10. J.D. Head, M.C. Zerner, A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 122(3), 264–270 (1985)

    Article  CAS  Google Scholar 

  11. C. Xue, T. Zhang, D. Xiao, An advanced Broyden–Fletcher–Goldfarb–Shanno algorithm for prediction and output-related fault monitoring in case of outliers. J. Chem. 20, 8–18 (2022)

    Google Scholar 

  12. N.M. Mohamed, F. Ullah, R. Bashiri, C.F. Kait, M.S.M. Saheed, M.U. Shahid, Hubbard’s modified density functional theory calculations for the electronic structure and optical properties of carbon doped anatase TiO2, in Book Hubbard’s Modified Density Functional Theory Calculations for the Electronic Structure and Optical Properties of Carbon Doped Anatase TiO2, vol. 45 (2021), pp. 371–381

    Google Scholar 

  13. E. German, R. Faccio, A.W. Mombru, Comparison of standard DFT and Hubbard-DFT methods in structural and electronic properties of TiO2 polymorphs and H-titanate ultrathin sheets for DSSC application. Appl. Surf. Sci. 428, 118–123 (2018)

    Article  CAS  Google Scholar 

  14. F. Ullah, R. Bashiri, N. Muti Mohamed, A. Zaleska-Medynska, C.F. Kait, U. Ghani, M.U. Shahid, M.S.M. Saheed, Exploring graphene quantum dots@TiO2 rutile (011) interface for visible-driven hydrogen production in photoelectrochemical cell: density functional theory and experimental study. Appl. Surf. Sci. 576, 151871 (2022)

    Google Scholar 

  15. H.-C. Wu, S.-H. Li, S.-W. Lin, Effect of Fe concentration on Fe-doped anatase TiO2 from GGA+ U calculations. Int. J. Photoenergy 25, 391–401 (2012)

    CAS  Google Scholar 

  16. M. Berrahal, A. Bentouaf, H. Rached, R. Mebsout, B. Aissa, Investigation of Ruthenium based Full-Heusler compound for thermic, spintronics and thermoelectric applications: DFT computation. Mater. Sci. Semicond. Process. 134, 106047 (2021)

    Article  CAS  Google Scholar 

  17. R. Asahi, Y. Taga, W. Mannstadt, Electronic and optical properties of anatase. Phys. Rev. B Condens. Matter Mater. Phys. 61(11), 7459–7465 (2000)

    Article  CAS  Google Scholar 

  18. N.M. Mohamed, F. Ullah, R. Bashiri, C.F. Kait, M.S.M. Saheed, M.U. Shahid, Hubbard’s modified density functional theory calculations for the electronic structure and optical properties of carbon doped anatase TiO2, in Book Hubbard’s Modified Density Functional Theory Calculations for the Electronic Structure and Optical Properties of Carbon Doped Anatase TiO2 (Springer, 2021), pp. 371–381

    Google Scholar 

  19. J. Safaei, H. Ullah, N.A. Mohamed, M.F.M. Noh, M.F. Soh, A.A. Tahir, N.A. Ludin, M.A. Ibrahim, W.N.R.W. Isahak, M.A.M. Teridi, Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018)

    Article  CAS  Google Scholar 

  20. J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 131(34), 12290–12297 (2009)

    Article  CAS  Google Scholar 

  21. R. Shirley, M. Kraft, O.R. Inderwildi, Electronic and optical properties of aluminium-doped anatase and rutile TiO2 from ab initio calculations. Phys. Rev. B 81(7), 075111 (2010)

    Google Scholar 

  22. H.H. Do, D.L.T. Nguyen, X.C. Nguyen, T.-H. Le, T.P. Nguyen, Q.T. Trinh, S.H. Ahn, D.-V.N. Vo, S.Y. Kim, Q. Van Le, Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review. Arab. J. Chem. 13(2), 3653–3671 (2020)

    Article  CAS  Google Scholar 

  23. F. Ullah, N.M. Mohamed, M.S.M. Saheed, C.F. Kait, Density functional theory calculations for the electronic structure of carbon and copper co-doped TiO2 rutile model, in AIP Conference Proceedings, vol. 2610(1) (2022), p. 030004

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Grant # FRGS/1/2019/STG07/UTP/01/1, via Fundamental Research Grant Scheme (FRGS), and Universiti Teknologi PETRONAS (UTP) for financial assistance and lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shuaib Mohamed Saheed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Institute of Technology PETRONAS Sdn Bhd

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ullah, F., Guan, B.H., Zaine, S.N.A., Ghani, U., Saheed, M.S.M. (2023). Effect of Nitrogen Doping on Optoelectronic Properties of TiO2 Anatase Model for Solar Hydrogen Production: A DFT + U Approach. In: Othman, M.B., Abdul Karim, S.A., Wilfred, C.D., Lee, K.C., Sokkalingam, R. (eds) Proceedings of the 1st International Conference of New Energy . Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-99-0859-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0859-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0858-5

  • Online ISBN: 978-981-99-0859-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics