Skip to main content

Advertisement

Log in

Optimization of Post-selenization Process of Co-sputtered CuIn and CuGa Precursor for 11.19% Efficiency Cu(In, Ga)Se2 Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, CuInGa alloy precursor films are fabricated by co-sputtering of CuIn and CuGa targets simultaneously. After selenization in a tube-type rapid thermal annealing system under a Se atmosphere, the Cu(In, Ga)Se2 (CIGS) absorber layers are obtained. Standard soda lime glass (SLG)/Mo/CIGS/CdS/i-ZnO/ITO/Ag grid structural solar cells are fabricated based on the selenized CIGS absorbers. The influences of selenization temperatures on the composition, crystallinity, and device performances are systematically investigated by x-ray energy dispersive spectroscopy, x-ray diffraction, Raman spectroscopy, and the current density–voltage (JV) measurement. It is found that the elemental ratio of Cu/(In + Ga) strongly depends on the selenization temperatures. Because of the appropriate elemental ratio, a 9.92% conversion efficiency is reached for the CIGS absorber selenized at 560°C. After the additional optimization by pre-annealing treatment at 280°C before the selenization, a highest conversion efficiency of 11.19% with a open-circuit (V oc) of 456 mV, a short-circuit (J sc) of 40.357 mA/cm2 and a fill factor of 60.82% without antireflection coating has been achieved. Above 13% efficiency improvement was achievable. Our experimental findings presented in this work demonstrate that the post-selenization of co-sputtered CuIn and CuGa precursor is a promising way to fabricate high quality CIGS absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Hossain, T.L. Zhang, K.K. Lee, X.L. Li, R.R. Prabhakar, S.K. Batabyal, S.G. Mhaisalkar, and L.H. Wong, J. Mater. Chem. A 3, 4147 (2015).

    Article  Google Scholar 

  2. H.L. Hwang, C.L. Cheng, L.M. Liu, Y.C. Liu, and C.Y. Sun, Thin Solid Films 67, 83 (1980).

    Article  Google Scholar 

  3. F.B. Dejene, J. Mater. Sci. 46, 6981 (2011).

    Article  Google Scholar 

  4. V. Awasthi, S.K. Pandey, S. Kumar, C. Mukherjee, M. Gupta, and S. Mukherjee, J. Phys. D Appl. Phys. 48, 485305 (2015).

    Article  Google Scholar 

  5. H.L. Hwang, C.Y. Sun, C.S. Fang, S.D. Chang, C.H. Cheng, M.H. Yang, H.H. Lin, and H. Tuwan-Mu, J. Cryst. Growth 55, 116 (1981).

    Article  Google Scholar 

  6. P.M. Christopher, E.C. Carelyn, and J.A. Timothy, J. Mater. Sci. 51, 3362 (2016).

    Article  Google Scholar 

  7. M.M. Steven, J.H. Charles, J.C. Nathaniel, and A. Rakesh, Prog. Photovolt. Res. Appl. 23, 1550 (2015).

    Article  Google Scholar 

  8. S. Rampino, N. Armani, F. Bissoli, M. Bronzoni, D. Calestani, M. Calicchio, N. Delmonte, E. Gilioli, E. Gombia, R. Mosca, L. Nasi, F. Pattini, A. Zappettini, and M. Mazzer, Appl. Phys. Lett. 101, 132107 (2012).

    Article  Google Scholar 

  9. H. Yoon, S.H. Na, J.Y. Choi, M.W. Kim, H. Kim, H.S. An, B.K. Min, S. Ah, J.H. Yun, J. Gwak, K. Yoon, S.S. Kolekar, M. Hest-FAM, S.S. Al-Deyab, M.T. Swihart, and S.S. Yoon, ACS Appl. Mater. Interfaces 6, 8369 (2014).

    Article  Google Scholar 

  10. A. Chirilǎ, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Belger, and A.N. Tiwari, Nat. Mater. 10, 857 (2011).

    Article  Google Scholar 

  11. C.W. Chen, H.W. Tsai, T.T. Wu, Y.T. Yen, Y.C. Wang, C.H. Hsu, W.C. Tsai, H.S. Tsai, C.H. Shen, J.M. Shieh, and Y.L. Chueh, J. Mater. Chem. A 3, 14985 (2015).

    Article  Google Scholar 

  12. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovolt. Res. Appl. 16, 235 (2008).

    Article  Google Scholar 

  13. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011).

    Article  Google Scholar 

  14. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, and M. Powalla, Phys. Stat. Sol. RRL 9, 28 (2015).

    Article  Google Scholar 

  15. L.Q. Ouyang, M. Zhao, D.M. Zhuang, J.F. Han, L. Guo, X.L. Li, and M.J. Cao, Mater. Lett. 137, 249 (2014).

    Article  Google Scholar 

  16. X.L. Zhu, Y.M. Wang, Z. Zhou, A.M. Li, L. Zhang, and F.Q. Huang, Sol. Energy Mater. Sol. Cells 113, 140 (2013).

    Article  Google Scholar 

  17. G.S. Chen, J.C. Yang, Y.C. Chan, L.C. Yang, and W. Huang, Sol. Energy Mater. Sol. Cells 93, 1351 (2009).

    Article  Google Scholar 

  18. H. Kong, J. He, X.K. Meng, L.P. Zhu, J.H. Tao, L. Sun, P.X. Yang, and J.H. Chu, Mater. Lett. 118, 21 (2014).

    Article  Google Scholar 

  19. V. Awasthi, S.K. Pandey, S. Verma, M. Gupta, and S. Mukherjee, J. Mater. Sci. Mater. Electron. 25, 3069 (2014).

    Article  Google Scholar 

  20. Y.K. Liao, Y.C. Wang, Y.T. Yen, C.H. Chen, D.H. Hsieh, S.C. Chen, C.Y. Lee, C.C. Lai, W.C. Kuo, J.Y. Juang, K.H. Wu, S.J. Cheng, C.H. Lai, F.I. Lai, S.Y. Kuo, H.C. Kuo, and Y.L. Chueh, ACS Nano 8, 7318 (2013).

    Article  Google Scholar 

  21. Y.B. He, A. Polity, H.R. Alves, W. Kriegseis, D. Pfisterer, B.K. Meyer, and M. Hardt, Thin Solid Films 403, 62 (2002).

    Article  Google Scholar 

  22. G.X. Liang, P. Fan, C.M. Chen, Z.H. Zheng, and D.P. Zhang, J. Alloys Compd. 610, 337 (2014).

    Article  Google Scholar 

  23. L.Q. Ouyang, D.M. Zhuang, M. Zhao, N. Zhang, X.L. Li, L. Guo, R.J. Sun, and M.J. Cao, Phys. Stat. Sol. A 8, 1774 (2015).

    Article  Google Scholar 

  24. R.N. Bhattacharya, Sol. Energy Mater. Sol. Cells 113, 96 (2013).

    Article  Google Scholar 

  25. J. Wang, J. Zhu, and L.L. Liao, J. Mater. Sci. Mater. Electron. 25, 1863 (2014).

    Article  Google Scholar 

  26. H.S. Lee, N.M. Park, K.S. Lee, J. Kim, and H.J. Chang, J. Korean Phys. Soc. 60, 1753 (2012).

    Article  Google Scholar 

  27. J. Kim, H.S. Lee, and N.M. Park, Curr. Appl. Phys. 14, S63 (2014).

    Article  Google Scholar 

  28. O. Cojocaru-Mirédin, P. Choi, R. Wuerz, and D. Raabe, Appl. Phys. Lett. 101, 181603 (2012).

    Article  Google Scholar 

  29. A. Antony, A.S. Asha, R.Y. Yoosuf, R. Manoj, and M.K. Jayaraj, Sol. Energy Mater. Sol. Cells 81, 407 (2004).

    Article  Google Scholar 

  30. Y.S. Lim, J. Jeong, J.Y. Kim, M.J. Ko, H. Kim, B. Kim, U. Jeong, and D.K. Lee, J. Phys. Chem. C 117, 11930 (2013).

    Article  Google Scholar 

  31. Z. Yu, C.P. Yan, T. Huang, W. Huang, Y. Yan, Y.X. Zhang, L. Liu, Y. Zhang, and Y. Zhao, Appl. Surf. Sci. 258, 5222 (2012).

    Article  Google Scholar 

  32. R. Mainz, A. Weber, H. Rodriguez-Alvarez, S. Levcenko, M. Klaus, P. Pistor, R. Klenk, and H. Schock, Prog. Photovolt. Res. Appl. 23, 1131 (2014).

    Article  Google Scholar 

  33. J.C. Malaquias, D. Regesch, P.J. Dale, and M. Steichen, Phys. Chem. Chem. Phys. 16, 2561 (2014).

    Article  Google Scholar 

  34. M. Raghuwanshi, E. Cadel, P. Pareige, S. Duguay, F. Couzinie-Devy, L. Arzel, and N. Barreau, Appl. Phys. Lett. 105, 013902 (2014).

    Article  Google Scholar 

  35. Q. Cao, O. Gunawan, M. Copel, K.B. Reuter, S.J. Chey, V.R. Deline, and D.B. Mitzi, Adv. Energy Mater. 1, 845 (2011).

    Article  Google Scholar 

  36. C.H. Hsu, Y.S. Su, S.Y. Wei, C.H. Chen, W.H. Ho, C. Chang, Y.H. Wu, C.J. Lin, and C.H. Lai, Prog. Photovolt. Res. Appl. 23, 1621 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. PCS IRT_15R18), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (B20140004), and the National Natural Science Foundation of China (Nos. 61376061, 11274093, 51572070).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuliang Du.

Additional information

Ke Cheng and Kaikai Han contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Han, K., Kuang, Z. et al. Optimization of Post-selenization Process of Co-sputtered CuIn and CuGa Precursor for 11.19% Efficiency Cu(In, Ga)Se2 Solar Cells. J. Electron. Mater. 46, 2512–2520 (2017). https://doi.org/10.1007/s11664-017-5334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5334-y

Keywords

Navigation