Skip to main content
Log in

Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin oxide is a commonly used gas-sensing material, which can be applied as an n- or p-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3 μm to 10.7 μm, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p-type semiconductor behavior and was used without the addition of any catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  2. B.F. Bessac and S.-E. Jordt, Proc. Am. Thorac. Soc. 7, 269 (2010).

    Article  Google Scholar 

  3. C. Hou, J. Li, D. Huo, X. Luo, J. Dong, M. Yang, and X. Shi, Sens. Actuators B. 161, 244 (2012).

    Article  Google Scholar 

  4. A. Hempel-Jorgensen, S.K. Kjaergaard, L. Molhave, and K.H. Hudnell, Arch. Environ. Health 54, 416 (1999).

    Article  Google Scholar 

  5. M.L. Boeglin, D. Wessels, and D. Henshel, Environ. Res. 100, 242 (2006).

    Article  Google Scholar 

  6. G.F. Fine, L.M. Cavanagh, A. Afonja, and R. Binions, Sensors 10, 5469 (2010).

    Article  Google Scholar 

  7. N. Yamazoe, Sens. Actuators B. 5, 7 (1991).

    Article  Google Scholar 

  8. B. Zhang, W. Fu, H. Li, X. Fu, Y. Wang, H. Bala, X. Wang, G. Sung, J. Cao, and Z. Zhang, Appl. Surf. Sci. 363, 560 (2016).

    Article  Google Scholar 

  9. J.F. Boyle and K.A. Jones, J. Electron. Mater. 6, 717 (1977).

    Article  Google Scholar 

  10. J. Xu, Q. Pan, Y. Shun, and Z. Tian, Sens. Actuators B. 66, 277 (2000).

    Article  Google Scholar 

  11. T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, and M. Tiemann, Adv. Funct. Mater. 19, 653 (2009).

    Article  Google Scholar 

  12. X.-L. Li, T.-J. Lou, X.-M. Sun, and Y.-D. Li, Inorg. Chem. 43, 5442 (2004).

    Article  Google Scholar 

  13. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, and E.-K. Suh, Mater. Charact. 58, 680 (2007).

    Article  Google Scholar 

  14. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, Thin Solid Films 418, 9 (2002).

    Article  Google Scholar 

  15. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater. 18, 867 (2006).

    Article  Google Scholar 

  16. H. Nguyen and S.A. El-Safty, J. Phys. Chem. C 115, 8466 (2011).

    Article  Google Scholar 

  17. S. Pokhrel, C.E. Simion, V. Quemener, N. Barsan, and U. Weimar, Sens. Actuators B . 133, 78 (2008).

    Article  Google Scholar 

  18. N. Barsan, C. Simion, T. Heine, S. Pokhrel, and U. Weimar, J. Electroceram. 25, 11 (2010).

    Article  Google Scholar 

  19. H.-J. Kim and J.-H. Lee, Sens. Actuators B. 192, 607 (2014).

    Article  Google Scholar 

  20. K. Pirkanniemi and M. Sillanpää, Chemosphere 48, 1047 (2002).

    Article  Google Scholar 

  21. M.M. Bettahar, G. Costentin, L. Savary, and J.C. Lavalley, Appl. Catal. A. 145, 1 (1996).

    Article  Google Scholar 

  22. Y. Motooka and A. Ozaki, J. Catal. 5, 116 (1966).

    Article  Google Scholar 

  23. S.S. Kaye and J.R. Long, J. Am. Chem. Soc. 127, 6506 (2005).

    Article  Google Scholar 

  24. M. Kodu, T. Avarmaa, A. Floren, and R. Jaaniso, J. Eur. Ceram. Soc. 33, 2335 (2013).

    Article  Google Scholar 

  25. J. Huang, L. Wang, C. Gu, and J.-J. Shim, Mater. Lett. 136, 371 (2014).

    Article  Google Scholar 

  26. N. Yamazoe, G. Sakai, and K. Shimanoe, Catal. Surv. Asia 7, 63 (2003).

    Article  Google Scholar 

  27. W.Y. Yin, B.Q. Wei, and C.W. Hu, Chem. Phys. Lett. 471, 11 (2009).

    Article  Google Scholar 

  28. T. Sahm, L. Mädler, A. Gurlo, N. Barsan, S.E. Pratsinis, and U. Weimar, Sens. Actuators B. 98, 148 (2004).

    Article  Google Scholar 

  29. L.C. Tien, S.J. Pearton, D.P. Norton, and F. Ren, Appl. Phys. A 91, 29 (2008).

    Article  Google Scholar 

  30. G.X. Wang, J.S. Park, M.S. Park, and X.L. Gou, Sens. Actuators B. 131, 313 (2008).

    Article  Google Scholar 

  31. D.J. Wales, J. Grand, V.P. Ting, R.D. Burke, K.J. Edler, C.R. Bown, S. Mintova, and A.D. Burrows, Chem. Soc. Rev. 44, 4290 (2015).

    Article  Google Scholar 

  32. N.T.P. Nhung, P.V. Tong, C.M. Hung, N.V. Duy, N.V. Chien, N.V. Vinh, N.T. Tuyen, and N.D. Hoa, RSC Adv. 6, 64215 (2016).

    Article  Google Scholar 

  33. Y.H. Cho, X. Liang, Y.C. Kang, and J.-H. Lee, Sens. Actuators B. 207, 330 (2015).

    Article  Google Scholar 

  34. Y.C. Goswami, V. Kumar, and P. Rajaram, Mater. Lett. 128, 425 (2014).

    Article  Google Scholar 

  35. P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, and X. Correig, Sens. Actuators, B 99, 201 (2004).

    Article  Google Scholar 

  36. R. Zhang, T. Zhou, L. Wang, Z. Lou, J. Deng, and T. Zhang, New J. Chem. 40, 6796 (2016).

    Article  Google Scholar 

  37. C.M. Hung, N.D. Hoa, N.V. Duy, N.V. Toan, D.T.T. Le, and N.V. Hieu, J. Sci. Adv. Mater. Devices 1, 45 (2016).

    Article  Google Scholar 

  38. H. Jo, M.J. Kim, H. Choi, Y.-E. Sung, H. Choe, and D.C. Dunand, Metall. Mater. Trans. E 3, 46 (2016).

    Google Scholar 

  39. E.R. Leite, J.A. Cerri, E. Longo, J.A. Varela, and C.A. Paskocima, J. Eur. Ceram. Soc. 21, 669 (2001).

    Article  Google Scholar 

  40. T. Kimura, S. Inada, and T. Yamaguchi, J. Mater. Sci. 24, 220 (1989).

    Article  Google Scholar 

  41. C.I. Drowley, 1-Application of Materials Characterization Techniques to Silicon Epitaxial Growth (Woburn: Butterworth Heinemann, 1993).

    Book  Google Scholar 

  42. M.K. Shobana, V. Rajendran, K. Jeyasubramanian, and N.S. Kumar, Mater. Lett. 61, 2616 (2007).

    Article  Google Scholar 

  43. M.K. Shobana, W. Nam, and H. Choe, J. Nanosci. Nanotechnol. 13, 3535 (2013).

    Article  Google Scholar 

  44. B. Ravel and M. Newville, J. Synchrotron Radiat. 12, 537 (2005).

    Article  Google Scholar 

  45. X.-T. Chen, K.-X. Wang, Y.-B. Zhai, H.-J. Zhang, X.-Y. Wu, X. Wei, and J.-S. Chen, Dalton Trans. 43, 3137 (2014).

    Article  Google Scholar 

  46. G. Leveque, S. Abanades, J.-C. Jumas, and J. Olivier-Fourcade, Ind. Eng. Chem. Res. 53, 5668 (2014).

    Article  Google Scholar 

  47. H. Park, J.H. Um, H. Choi, W.-S. Yoon, Y.-E. Sung, and H. Choe, Appl. Surf. Sci. 399, 132 (2017)

  48. K. Nagashima and Y. Furukawa, J. Cryst. Growth 171, 577 (1997).

    Article  Google Scholar 

  49. G.W. Young, S.H. Davis, and K. Brattkus, J. Cryst. Growth 83, 560 (1987).

    Article  Google Scholar 

  50. S. Deville, E. Saiz, and A.P. Tomsia, Acta Mater. 55, 1965 (2007).

    Article  Google Scholar 

  51. J.H. Um, M. Choi, H. Park, Y.-H. Cho, D.C. Dunand, H. Choe, and Y.-E. Sung, Sci. Rep. 6, 18626 (2016).

    Article  Google Scholar 

  52. Y.-H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe, and J. Sakamoto, J. Mater. Sci. 47, 5970 (2012).

    Article  Google Scholar 

  53. S.I. Bae and S. Baik, J. Mater. Sci. 28, 4197 (1993).

    Article  Google Scholar 

  54. K. Mirabbaszadeh and M. Mehrabian, Phys. Scr. 85, 0357001 (2012).

    Article  Google Scholar 

  55. V. Kruefua, A. Wisitsoraatb, D. Phokharatkulb, A. Tuantranontb, and S. Phanichphant, Sens. Actuators, B 236, 466 (2016).

    Article  Google Scholar 

  56. W. Guo, L. Fu, Y. Zhang, K. Zhang, L.Y. Liang, Z.M. Liu, H.T. Cao, and X.Q. Pan, Appl. Phys. Lett. 96, 042113 (2010).

    Article  Google Scholar 

  57. I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, and J.R. Morante, Sens. Actuators B. 93, 475 (2003).

    Article  Google Scholar 

  58. K.S. Choi, S. Park, and S.P. Chang, Sens. Actuators B. 238, 871 (2017).

    Article  Google Scholar 

  59. Y.J. Chen, L. Nie, X.Y. Xur, Y.G. Wang, and T.H. Wang, Appl. Phys. Lett. 88, 083105 (2006).

    Article  Google Scholar 

  60. N. Lavanya, C. Sekar, S. Ficarra, E. Tellone, A. Bonavita, S.G. Leonrdi, and G. Neri, Mater. Sci. Eng., C 62, 53 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyelim Choi or Hee Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, K., Kim, HG., Choi, H. et al. Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. J. Electron. Mater. 46, 3748–3756 (2017). https://doi.org/10.1007/s11664-016-5242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5242-6

Keywords

Navigation