Skip to main content
Log in

Fast synthesis of low density monolithic porous microstructure tin foam

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

By combining hydrogen bubbles dynamics template with electrodeposition, we successfully synthesized bulk open porous microstructure tin foam in several 10 sec. With the control of salt concentration and current density, we realized the well-controlled tuning of pore sizes and inter-pore distances, then eventually tuned the morphology and density of the as-synthesized tin foams. We have also investigated the structure and chemical composition of the as-synthesized tin foams by the scanning electron microscopy, X-ray diffraction and energy dispersive spectrometer. A formation mechanism of bulk tin foams was also proposed in this paper. Our studies imply that the parameters of current density, main salt concentration, and the surfactant play critical roles on the successful synthesis of desired bulk tin foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.C. Tappan, S.A. Steiner, E.P. Luther, Nanoporous Metal Foams. Angew. Chem. Int. Ed. 49, 4544–4565 (2010)

    Article  CAS  Google Scholar 

  2. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)

    Article  CAS  Google Scholar 

  3. R. Liu, A. Antoniou, A relation between relative density, alloy composition and sample shrinkage for nanoporous metal foams. Scr. Mater. 67, 923–926 (2012)

    Article  CAS  Google Scholar 

  4. A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)

    Article  CAS  Google Scholar 

  5. G. Pia, F. Delogu, A phenomenological approach to yield strength in nanoporous metal foams. Scr. Mater. 103, 26–29 (2015)

    Article  CAS  Google Scholar 

  6. X. Xiao, P. Zhang, M. Li, Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl. Energy 112, 1357–1366 (2013)

    Article  CAS  Google Scholar 

  7. B.C. Tappan, M.H. Huynh, M.A. Hiskey, D.E. Chavez, E.P. Luther, J.T. Mang, S.F. Son, Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. J. Am. Chem. Soc. 128, 6589–6594 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. R. Liu, A. Antoniou, A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 61, 2390–2402 (2013)

    Article  CAS  Google Scholar 

  9. M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, Facile synthesis of hierarchical Co3O4@MnO2 coreeshell arrays on Ni foam for asymmetric supercapacitors. J. Power Sour. 252, 98–106 (2014)

    Article  CAS  Google Scholar 

  10. Y. Liang, P. Wang, H.B. Dai, Hydrogen bubbles dynamic template preparation of a porous Fe–Co–B/Ni foamcatalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. J. Alloys Compd. 491, 359–365 (2010)

    Article  CAS  Google Scholar 

  11. W. Zhou, X. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 6, 2921–2924 (2013)

    Article  CAS  Google Scholar 

  12. F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors. J. Power Sour. 203, 250–256 (2012)

    Article  CAS  Google Scholar 

  13. Y.-H. Chang, C.-T. Lin, T.-Y. Chen, C.-L. Hsu, Y.-H. Lee, W. Zhang, K.-H. Wei, L.-J. Li, Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. G.J. Davies, S. Zhen, Metallic foams: their production, properties and applications. J. Mater. Sci. 18, 1899–1911 (1983)

    Article  CAS  Google Scholar 

  15. A.E. Simone Jr., Porous metals and metallic foams. dspace.mit.edu (1997)

  16. H.C. Shin, M. Liu, Copper foam structures with highly porous nanostructured walls. Chem. Mater. 16, 5460–5464 (2004)

    Article  CAS  Google Scholar 

  17. M.P. Zach, R.M. Penner, Nanocrystalline nickel nanoparticles. Adv. Mater. 12, 878–883 (2000)

    Article  CAS  Google Scholar 

  18. H.C. Shin, J. Dong, M. Liu, Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 15, 1610–1613 (2003)

    Article  CAS  Google Scholar 

  19. Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 9, 981–988 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It was supported by the joint fund of the National Natural Science Foundation Committee of China Academy of Engineering Physics (NSAF) (Grant No. U1630108). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. We also thank Hongbo Ren for the contribution to the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Xiang or Xudong Cui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1430 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Ali, R.N., Yang, Y. et al. Fast synthesis of low density monolithic porous microstructure tin foam. J Porous Mater 26, 1363–1368 (2019). https://doi.org/10.1007/s10934-019-00739-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00739-5

Keywords

Navigation