Skip to main content
Log in

Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tin oxide (SnO2) nanorods were grown by high-pressure pulsed laser deposition (PLD). The nanorods were grown without the use of a catalyst but required high background pressure growth in order to realize small grain columnar growth and nanorod formation, with nanorod formation most favored on non-epitaxial substrates. The structures and morphology were characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). X-ray diffraction and HRTEM analysis indicate that the as-grown SnO2 nanorods are single crystals with a rutile structure. The nanorods are approximately 50–90 nm in diameters and 1.5 μm in length. This method provides an approach for large area synthesis of one dimensional SnO2 nanostructure materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  2. A. Kolmakov, M. Moskovits, Ann. Rev. Mater. Res. 34, 151 (2004)

    Article  Google Scholar 

  3. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001)

    Article  ADS  Google Scholar 

  4. Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, J.R. LaRoche, Mater. Sci. Eng. Rep. 47, 1 (2004)

    Article  Google Scholar 

  5. Y.W. Heo, L.C. Tien, D.P. Norton, B.S. Kang, F. Ren, B.P. Gila, S.J. Pearton, Appl. Phys. Lett. 85, 2002 (2004)

    Article  ADS  Google Scholar 

  6. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath, C.M. Lieber, Science 302, 1377 (2003)

    Article  ADS  Google Scholar 

  7. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  8. Y.W. Heo, L.C. Tien, Y. Kwon, D.P. Norton, S.J. Pearton, B.S. Kang, F. Ren, Appl. Phys. Lett. 85, 2274 (2004)

    Article  ADS  Google Scholar 

  9. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)

    Article  ADS  Google Scholar 

  10. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  11. P. Yang, C.M. Lieber, J. Mater. Res. 12, 2981 (1997)

    Article  ADS  Google Scholar 

  12. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Appl. Phys. Lett. 86, 243503 (2005)

    Article  ADS  Google Scholar 

  13. D.S. Lee, G.H. Rue, J.S. Huh, S.D. Choi, D.D. Lee, Sens. Actuators B 77, 90 (2001)

    Article  Google Scholar 

  14. Y. Lie, E. Kpep, M. Liu, Chem. Mater. 17, 3997 (2005)

    Article  Google Scholar 

  15. C. Kilic, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)

    Article  ADS  Google Scholar 

  16. K.J. Bachmann, H. Schreiber, W. R. S. Jr., P.H. Schmidt, F.A. Thiel, E.G. Spencer, G. Pasteur, W.L. Feldmann, K. SreeHarsha, J. Appl. Phys. 50, 3441 (1979)

    Article  ADS  Google Scholar 

  17. H. Kobayashi, T. Ishida, K. Nakamura, Y. Nakato, H. Tsubomura, J. Appl. Phys. 72, 5288 (1992)

    Article  ADS  Google Scholar 

  18. S. Shukla, P. Zhang, H.J. Cho, Z. Rahman, C. Drake, S. Seal, J. Appl. Phys. 98, 104306 (2005)

    Article  ADS  Google Scholar 

  19. L.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton, H.T. Wang, B.S. Kang, F. Ren, J. Jun, J. Lin, Appl. Phys. Lett. 87, 222106 (2005)

    Article  ADS  Google Scholar 

  20. X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 88, 201907 (2006)

    Article  ADS  Google Scholar 

  21. A. Khanna, R. Kumar, S.S. Bhatti, Appl. Phys. Lett. 82, 4388 (2003)

    Article  ADS  Google Scholar 

  22. Y.J. Chen, X.Y. Xue, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 87, 233503 (2005)

    Article  ADS  Google Scholar 

  23. Y.J. Chen, L. Nie, X.Y. Xue, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 88, 083105 (2006)

    Article  ADS  Google Scholar 

  24. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Edit. 41, 2405 (2002)

    Article  Google Scholar 

  25. B. Wang, Y.H. Yang, C.X. Wang, G.W. Yang, J. Appl. Phys. 98, 073520 (2005)

    Article  ADS  Google Scholar 

  26. C. Xu, G. Xu, Y. Liu, X. Zhao, G. Wang, Scripta Mater. 46, 789 (2002)

    Article  Google Scholar 

  27. C. Xu, X. Zhao, S. Liu, G. Wang, Solid State Commun. 125, 301 (2003)

    Article  ADS  Google Scholar 

  28. L. Vayssieres, M. Graetzel, Angew. Chem. Int. Edit. 43, 3666 (2004)

    Article  Google Scholar 

  29. B. Cheng, J.M. Russell, W. Shi, L. Zhang, E.T. Samulski, J. Am. Chem. Soc. 126, 5972 (2004)

    Article  Google Scholar 

  30. S.K. Soumen Das, Subhadra Chaudhuri, J. Appl. Phys. 99, 114303 (2006)

  31. A.M. Morales, C.M. Lieber, Science 9, 208 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.P. Norton.

Additional information

PACS

81.16.Mk; 61.46.-w; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tien, L., Pearton, S., Norton, D. et al. Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition. Appl. Phys. A 91, 29–32 (2008). https://doi.org/10.1007/s00339-007-4378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4378-x

Keywords

Navigation