Skip to main content
Log in

Effects of Sb Substitution by Sn on the Thermoelectric Properties of ZrCoSb

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZrCoSb1−x Sn x (x = 0, 0.1, 0.2, 0.3, 0.35) half-Heusler (HH) samples were prepared by arc melting, ball milling and then hot-pressing. X-ray diffraction analysis results showed that all samples were crystallized in a HH phase. Thermoelectric (TE) properties of ZrCoSb1−x Sn x were measured from room temperature (RT) to 973 K. The Seebeck coefficient changed from negative to positive after substituting Sb with Sn, indicating the occurrence of conduction type transformation in ZrCoSb-based HH compounds. At the same time, the Seebeck coefficient decreased with increasing Sn substitution, and the electrical conductivity increased obviously with Sn addition when x ≤ 0.3. The lattice thermal conductivity of Sn-substituted samples was reduced dramatically because of the stronger phonon scattering by the strain field fluctuation induced by Sn replacement of Sb. Finally, as a result of the Sn substitution, a peak ZT of 0.52 was reached at 973 K in the ZrCoSb0.7Sn0.3 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. Y.Z. Pei, X.Y. Shi, A.D. Lalonde, H. Wang, L.D. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  3. W.J. Xie, A. Weidenkaff, X.F. Tang, Q.G. Zhang, J. Poon, and T.M. Tritt, J. Nanomater. 2, 379 (2012).

    Article  Google Scholar 

  4. L.H. Huang, Q.Y. Zhang, B. Yuan, X. Lai, X. Yan, and Z.F. Ren, Mater. Res. Bull. 76, 107 (2016).

    Article  Google Scholar 

  5. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Article  Google Scholar 

  6. X.H. Liu, J. He, H.H. Xie, X.B. Zhao, and T.J. Zhu, Int. J. Smart Nano Mater. 3, 64 (2012).

    Article  Google Scholar 

  7. E. Rausch, B. Balke, T. Deschauer, S. Ouardi, and C. Felser, APL Mater. 3, 041516 (2015).

    Article  Google Scholar 

  8. C.G. Fu, T.J. Zhu, Y.T. Liu, H.H. Xie, and X.B. Zhao, Energy Environ. Sci. 00, 1 (2012).

    Google Scholar 

  9. C.G. Fu, H.H. Xie, T.J. Zhu, J. Xie, and X.B. Zhao, J. Appl. Phys. 112, 124915 (2012).

    Article  Google Scholar 

  10. L.H. Huang, Y.M. Wang, J. Shuai, H. Zhang, S.Q. Yang, Q.Y. Zhang, and Z.F. Ren, RSC Adv. 5, 102469 (2015).

    Article  Google Scholar 

  11. C.C. Hsu and H.K. Ma, Mater. Sci. Eng. B 198, 80 (2015).

    Article  Google Scholar 

  12. M.M. Zou, J.F. Li, P.J. Guo, and T. Kita, J. Phys. D Appl. Phys. 43, 415403 (2010).

    Article  Google Scholar 

  13. S. Chen and Z.F. Ren, Mater. Today 16, 387 (2013).

    Article  Google Scholar 

  14. Y. Kawaharada, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 377, 312 (2004).

    Article  Google Scholar 

  15. T. Graf, C. Felser, and S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011).

    Article  Google Scholar 

  16. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G.G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  17. H.H. Xie, H. Wang, Y.Z. Pei, C.G. Fu, X.H. Liu, and G.J. Snyder, Adv. Funct. Mater. 23, 5123 (2013).

    Article  Google Scholar 

  18. K. Kawano, K. Kurosaki, T. Sekimoto, H. Muta, and S. Yamanaka, Appl. Phys. Lett. 91, 062115 (2007).

    Article  Google Scholar 

  19. H.H. Xie, H. Wang, C.G. Fu, Y.T. Liu, G.J. Snyder, X.B. Zhao, and T.J. Zhu, Sci. Rep. 4, 6888 (2014).

    Article  Google Scholar 

  20. R. He, H.S. Kim, Y.C. Lan, D.Z. Wang, S. Chen, and Z.F. Ren, RSC Adv. 4, 64711 (2014).

    Article  Google Scholar 

  21. M. Zhou, L.D. Chen, C.D. Feng, D.L. Wang, and J.F. Li, J. Appl. Phys. 101, 113714 (2007).

    Article  Google Scholar 

  22. N.J. Takas, P. Sahoo, D. Misra, H.F. Zhao, N.L. Henderson, K. Stokes, and P.F.P. Poudeu, J. Electron. Mater. 40, 662 (2011).

    Article  Google Scholar 

  23. C.C. Hsu, Y.N. Liu, and H.K. Ma, J. Alloys Compd. 621, 324 (2015).

    Article  Google Scholar 

  24. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys. 46, 673 (2007).

    Article  Google Scholar 

  25. P. Maji, J.P.A. Makongo, X.Y. Zhou, H. Chi, C. Uher, and P.F.P. Poudeu, J. Solid State Chem. 202, 70 (2013).

    Article  Google Scholar 

  26. X. Yan, W.S. Liu, S. Chen, H. Wang, Q. Zhang, G. Chen, and Z.F. Ren, Adv. Energy Mater. 3, 1195 (2013).

    Article  Google Scholar 

  27. T. Wu, W. Jiang, X.Y. Li, S.Q. Bai, S. Liufu, and L.D. Chen, J. Alloys Compd. 467, 590 (2009).

    Article  Google Scholar 

  28. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd. 407, 326 (2006).

    Article  Google Scholar 

  29. T. Wu, W. Jiang, X.Y. Li, Y.F. Zhou, and L.D. Chen, J. Appl. Phys. 102, 103705 (2007).

    Article  Google Scholar 

  30. R. Marazza, R. Ferro, and G. Rambaldi, J. Less Common Met. 39, 341 (1975).

    Article  Google Scholar 

  31. H. Kim, Z.M. Gibbs, Y.L. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

  32. P.G. Klemens, Phys. Rev. 119, 507 (1960).

    Article  Google Scholar 

  33. M. Zhou, L.D. Chen, W.Q. Zhang, and C.D. Feng, J. Appl. Phys. 98, 013708 (2005).

    Article  Google Scholar 

  34. J. Yang, G.P. Meisner, and L. Chen, Appl. Phys. Lett. 85, 1140 (2004).

    Article  Google Scholar 

  35. J. Callaway and H.C. Vonbaeyer, Phys. Rev. 120, 1149 (1960).

    Article  Google Scholar 

  36. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  Google Scholar 

  37. K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Appl. Phys. Lett. 87, 061919 (2005).

    Article  Google Scholar 

  38. G.A. Slack, Phys. Rev. 126, 427 (1962).

    Article  Google Scholar 

  39. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  Google Scholar 

  40. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Mater. Trans. 46, 1481 (2005).

    Article  Google Scholar 

  41. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, J. Phys.: Condens. Matter 11, 1697 (1999).

    Google Scholar 

  42. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  Google Scholar 

  43. S. Bhattacharya, A.L. Pope, R.T. Littleton IV, T.M. Tritt, V. Ponnambalam, Y. Xia, and S.J. Poon, Appl. Phys. Lett. 77, 2476 (2000).

    Article  Google Scholar 

  44. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wang or Qinyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Wang, B., Huang, L. et al. Effects of Sb Substitution by Sn on the Thermoelectric Properties of ZrCoSb. J. Electron. Mater. 46, 3076–3082 (2017). https://doi.org/10.1007/s11664-016-5168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5168-z

Keywords

Navigation