Skip to main content
Log in

Improving thermoelectric properties of ZrPtSn-based half-Heusler compound by Sb doping

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bipolar diffusion appeared at high temperature leads to the performance deterioration of thermoelectric (TE) materials, and TE materials with large band gaps have high intrinsic excitation temperature, which is important for high-temperature application. Previous calculation has revealed that ZrPtSn half-Heusler has a large band gap (~ 1.0 eV) among various half-Heusler compounds, which may be a good candidate for thermoelectric generators at high temperature. In this study, the structure and TE properties of ZrPtSn1-xSbx half-Heusler compounds were studied by optimization of carrier concentration through Sb doping. With 8% Sb substitution at Sn sites, the enhanced power factor of 23 μW·cm−1·K−2 at 850 K and figure of merit (zT) value of 0.5 at 1000 K were reported in n-type ZrPtSn compounds. Further, the effect of Ni alloying in ZrPt1-yNiySn0.92Sb0.08 compounds were also investigated. With the strong point defect scattering for phonons, the lattice thermal conductivity is decreased by ~ 40% at room temperature compared with that of unalloyed compounds. However, due to the depressed carrier mobility, the final zT does not show much superiority with ZrPtSn0.92Sb0.08 sample.

Graphic abstract

摘要

高温下出现双极扩散会导致热电材料性能恶化, 而宽禁带的热电材料具有较高的本征激发温度, 这对其在高温下的应用具有重要意义。有文献报道ZrPtSn Half-Heusler化合物具有较大的计算带隙(约1.0 eV), 也许会成为一种性能优异的高温热电材料。在本文中, 通过Sb掺杂优化载流子浓度, 研究了ZrPtSn1-xSbx Half-Heusler化合物的结构和热电性能。发现当Sb掺杂量为8%时, n型ZrPtSn化合物在850 K的功率因子提升到23 μW·cm-1·K-2, 1000 K时zT值提升到了0.5。进一步研究了Ni固溶对ZrPtSn性能的影响。由于点缺陷对声子的强散射作用, 固溶样品室温下晶格热导率降低了约40%。然而, 由于载流子迁移率的降低, 最终的zT与ZrPtSn0.92Sb0.08样品相比并没有实现明显的提升作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pei Y, LaLonde AD, Heinz NA, Shi X, Iwanaga S, Wang H, Chen L, Snyder GJ. Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv Mater. 2011;23(47):5674.

    Article  CAS  Google Scholar 

  2. Pei Y, May AF, Snyder GJ. Self-Tuning the carrier concentration of PbTe/Ag2Te composites with excess Ag for high thermoelectric performance. Adv Energy Mater. 2011;1(2):291.

    Article  CAS  Google Scholar 

  3. Nomura M, Kage Y, Nakagawa J, Hori T, Maire J, Shiomi J, Anufriev R, Moser D, Paul O. Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures. Phys Rev B. 2015;91(20):205422.

    Article  Google Scholar 

  4. Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.

    Article  CAS  Google Scholar 

  5. Rosi FD, Abeles B, Jensen RV. Materials for thermoelectric refrigeration. J Phys Chem Solids. 1959;10(2–3):191.

    Article  CAS  Google Scholar 

  6. Pei Y, LaLonde A, Iwanaga S, Snyder GJ. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci. 2011;4(6):2085.

    Article  CAS  Google Scholar 

  7. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.

    Article  CAS  Google Scholar 

  8. Sales BC, Chakoumakos BC, Mandrus D. Thermoelectric properties of thallium-filled skutterudites. Phys Rev B. 2000;61(4):2475.

    Article  CAS  Google Scholar 

  9. Shi X, Salvador JR, Yang J, Wang H. Thermoelectric properties of n-type multiple-filled skutterudites. J Electron Mater. 2009;38(7):930.

    Article  CAS  Google Scholar 

  10. Dong J, Sun FH, Tang H, Pei J, Zhuang HL, Hu HH, Zhang BP, Pan Y, Li JF. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energ Environ Sci. 2019;12(4):1396.

    Article  CAS  Google Scholar 

  11. WinterF De, Stapfer G, Medina E. The design of a nuclear power supply with a 50 year life expectancy: the JPL voyager’s SiGe MHW RTG. IEEE Aerosp Electron Syst Mag. 2000;15(4):5.

    Article  Google Scholar 

  12. Huang L, Zhang Q, Yuan B, Lai X, Yan X, Ren Z. Recent progress in half-Heusler thermoelectric materials. Mater Res Bull. 2016;76:107.

    Article  CAS  Google Scholar 

  13. Zhu T, Fu C, Xie H, Liu Y, Zhao X. High efficiency half-Heusler thermoelectric materials for energy harvesting. Adv Energy Mater. 2015;5(19):1500588.

    Article  Google Scholar 

  14. Grebenkemper JH, Hu Y, Barrett D, Gogna P, Huang CK, Bux SK, Kauzlarich SM. High temperature thermoelectric properties of Yb14MnSb11 prepared from reaction of MnSb with the elements. Chem Mater. 2015;27(16):5791.

    Article  CAS  Google Scholar 

  15. Cerretti G, Villalpando O, Fleurial JP, Bux SK. Improving electronic properties and mechanical stability of Yb14MnSb11 via W compositing. J Appl Phys. 2019;126(17):175102.

    Article  Google Scholar 

  16. Brown SR, Kauzlarich SM, Gascoin F, Snyder GJ. Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem Mater. 2006;18(7):1873.

    Article  CAS  Google Scholar 

  17. Galazka K, Xie W, Populoh S, Aguirre M H, Yoon S, Buettner G, Weidenkaff A. Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Met. 2020;39(6):659.

  18. Chen S, Lukas KC, Liu W, Opeil CP, Chen G, Ren Z. Effect of Hf concentration on thermoelectric properties of nanostructured n-type half-heusler materials HfxZr1-xNiSn0.99Sb0.01. Adv Energy Mater. 2013;3(9):1210.

    Article  CAS  Google Scholar 

  19. Yan X, Liu W, Chen S, Wang H, Zhang Q, Chen G, Ren Z. Thermoelectric property study of nanostructured p-type half-Heuslers (Hf, Zr, Ti)CoSb0.8Sn0.2. Adv Energy Mater. 2013;3(9):1195.

  20. Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun. 2015;6:8144.

    Article  Google Scholar 

  21. Schmitt J, Gibbs ZM, Snyder GJ, Felser C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater Horiz. 2015;2(1):68.

    Article  CAS  Google Scholar 

  22. Yang J, Li H, Wu T, Zhang W, Chen L, Yang J. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv Funct Mater. 2008;18(19):2880.

    Article  CAS  Google Scholar 

  23. Kimura Y, Zama A, Mishima Y. Thermoelectric properties of p-type half-Heusler compounds HfPtSn and ZrPtSn. In Proceedings of 25th International Conference on Thermoelectrics. Vienna. 2006. 115.

  24. Xie H, Wang H, Fu C, Liu Y, Snyder GJ, Zhao X, Zhu T. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci Rep. 2014;4:6888.

    Article  CAS  Google Scholar 

  25. Ren Q, Fu C, Qiu Q, Dai S, Liu Z, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L, Tong X, Felser C, Singh DJ, Zhu T, Yang J, Ma J. Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials. Nat Commun. 2020;11(1):3142.

    Article  CAS  Google Scholar 

  26. Gibbs ZM, Kim HS, Wang H, Snyder GJ. Band gap estimation from temperature dependent Seebeck measurement-deviations from the 2e|S|maxTmax relation. Appl Phys Lett. 2015;106(2):022112.

    Article  Google Scholar 

  27. Fu C, Yao M, Chen X, Maulana LZ, Li X, Yang J, Imasato K, Zhu F, Li G, Auffermann G, Burkhardt U, Schnelle W, Zhou J, Zhu T, Zhao X, Shi M, Dressel M, Pronin AV, Snyder GJ, Felser C. Revealing the intrinsic electronic structure of 3D half-Heusler thermoelectric materials by angle-resolved photoemission spectroscopy. Adv Sci. 2020;7(1):1902409.

    Article  CAS  Google Scholar 

  28. May AF, Flage-Larsen E, Snyder GJ. Electron and phonon scattering in the high-temperature thermoelectric La3Te4-zMz (M = Sb, Bi). Phys Rev B. 2010;81(12):125205.

    Article  Google Scholar 

  29. Kim HS, Gibbs ZM, Tang Y, Wang H, Snyder GJ. Characterization of Lorenz number with Seebeck coefficient measurement. Apl Mater. 2015;3(4):041506.

    Article  Google Scholar 

  30. Callaway J, Vonbaeyer HC. Effect of point imperfections on lattice thermal conductivity. Phys Rev. 1960;120(4):1149.

    Article  CAS  Google Scholar 

  31. Zhao D, Wang L, Bo L, Wu D. Synthesis and thermoelectric properties of Ni-doped ZrCoSb half-Heusler compounds. Metals. 2018;8(1):61.

    Article  Google Scholar 

  32. Liu Y, Fu C, Xia K, Yu J, Zhao X, Pan H, Felser C, Zhu T. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials. Adv Mater. 2018;30(32):1800881.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2019YFB1901103 and 2019YFE0103500), the National Natural Science Foundation of China (No. 51632010) and the Youth Innovation Promotion Association CAS (No. 2019253).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Heng Liu or Sheng-Qiang Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, CK., Song, QF., Xie, L. et al. Improving thermoelectric properties of ZrPtSn-based half-Heusler compound by Sb doping. Rare Met. 40, 2838–2846 (2021). https://doi.org/10.1007/s12598-021-01752-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01752-x

Keywords

Navigation