Skip to main content
Log in

Effects of Ir Substitution and Processing Conditions on Thermoelectric Performance of p-Type Zr0.5Hf0.5Co1−x Ir x Sb0.99Sn0.01 Half-Heusler Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A series of samples with the composition Zr0.5Hf0.5Co1−x Ir x Sb0.99Sn0.01 (x = 0.0 to 0.7) were synthesized by high-temperature solid-state reaction at 1173 K. High-density pellets of the powders were obtained using hot press (HP) and spark plasma sintering (SPS) techniques. The thermoelectric properties of the pellets were measured from 300 K to 750 K. Independently of the pressing conditions, all Ir-containing samples (x > 0) showed p-type semiconducting behavior. At 300 K, the electrical conductivity and thermopower of Zr0.5Hf0.5Co1−x Ir x Sb0.99Sn0.01 materials surprisingly increased with increasing Ir concentration. The largest electrical conductivity and thermopower values of 150 S/cm and 140 μV/K, respectively, were observed at 300 K for x = 0.7. The thermal conductivity of the synthesized materials decreased with increasing Ir content, went through a minimum value (x = 0.3), and increased thereafter with further addition of Ir. Pellets fabricated by SPS showed smaller thermal conductivity than pellets of the same composition obtained from uniaxial hot pressing. A thermal conductivity value of ∼2.0 W/m K was observed at 300 K for an SPS pellet with the com- position Zr0.5Hf0.5Co0.5Ir0.5Sb0.99Sn0.01. The thermal conductivity of Zr0.5Hf0.5- Co1−x Ir x Sb0.99Sn0.01 decreased with rising temperature, and the smallest value of ∼1.5 W/m K was observed at 750 K for the SPS specimen with x = 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Sootsman, D.-Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  2. F.J. Disalvo, Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  3. S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm, Appl. Phys. Lett. 88, 042106-1 (2006).

    Article  Google Scholar 

  4. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  CAS  Google Scholar 

  5. S.J. Poon, Semiconductor and Semimetals, ed. T.M. Tritt (New York: Academic, 2001), pp. 37–76.

    Google Scholar 

  6. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).

    Article  CAS  Google Scholar 

  7. J. Yang, G.P. Meisner, and L. Chen, Appl. Phys. Lett. 85, 1140 (2004).

    Article  CAS  Google Scholar 

  8. C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  CAS  Google Scholar 

  9. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).

    Article  Google Scholar 

  10. Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, and T.M. Tritt, J. Appl. Phys. 88, 1952 (2000).

    Article  CAS  Google Scholar 

  11. T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, J. Alloys Compd. 407, 326 (2006).

    Article  CAS  Google Scholar 

  12. Y. Kawaharada, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 384, 308 (2004).

    Article  CAS  Google Scholar 

  13. P. Maji, N.J. Takas, D.K. Misra, H. Gabrisch, K.L. Stokes, and P.F.P. Poudeu, J. Solid State Chem. 183, 1120 (2010).

    Article  CAS  Google Scholar 

  14. V. Ponnambalam, P.N. Alboni, J. Edwards, T.M. Tritt, S.R. Culp, and S.J. Poon, J. Appl. Phys. 103, 063716 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre F.P. Poudeu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takas, N.J., Sahoo, P., Misra, D. et al. Effects of Ir Substitution and Processing Conditions on Thermoelectric Performance of p-Type Zr0.5Hf0.5Co1−x Ir x Sb0.99Sn0.01 Half-Heusler Alloys. J. Electron. Mater. 40, 662–669 (2011). https://doi.org/10.1007/s11664-010-1501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1501-0

Keywords

Navigation