Skip to main content
Log in

Effect of O2 Fraction in the Sputter Gas on the Electrical Properties of Amorphous In-Zn-O and the Thin Film Transistor Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Amorphous oxide semiconductors (AOSs) exhibiting high mobility in the range of 10–30 cm2/Vs have received significant attention for their application in flexible and transparent electronics such as next-generation displays. Here, we report on how the oxygen volume fraction (vol.%) in the O2/Ar sputter gas affects both the electrical properties of sputtered amorphous In-Zn-O (a-IZO) and the threshold voltage of a-IZO thin film transistor (TFT) devices. As the oxygen fraction increases during sputter deposition, the carrier density in a-IZO is adjusted from the heavily-doped regime of >1020/cm3 to the semiconducting regime of <1017/cm3. A series of bottom-gated TFT devices were fabricated through depositing the channel a-IZO films as a function of O2 vol.%. All the TFTs manufactured operate in depletion mode and the threshold voltage is found to shift positively with the increasing presence of O2 in the sputter gas. These results are attributed to both a decrease in oxygen vacancy defects, which donate two free carriers per vacancy, and a subsequent reduction in the a-IZO channel’s carrier density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non-Cryst. Solids 203, 334 (1996).

    Article  Google Scholar 

  2. B. Yaglioglu, H.Y. Yeom, R. Beresford, and D.C. Paine, Appl. Phys. Lett. 89, 062103 (2006).

    Article  Google Scholar 

  3. J. Nasrullah, G.L. Tyler, and Y. Nishi, IEEE Trans. Nanotechnol. 4, 303 (2005).

    Article  Google Scholar 

  4. Y.-L. Wang, F. Ren, W. Lim, D.P. Norton, S.J. Pearton, I.I. Kravchenko, and J.M. Zavada, Appl. Phys. Lett. 90, 2321031 (2007).

    Google Scholar 

  5. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Brief Commun. Rev. Pap. 45, 4303 (2006).

    Article  Google Scholar 

  6. B.G. Lewis and D.C. Paine, MRS Bull. 25, 22 (2000).

    Article  Google Scholar 

  7. D.C. Paine, T. Whitson, D. Janiac, R. Beresford, C.O. Yang, and B. Lewis, J. Appl. Phys. 85, 8445 (1999).

    Article  Google Scholar 

  8. S. Lee, K. Park, and D.C. Paine, J. Mater. Res. 27, 2299 (2012).

    Article  Google Scholar 

  9. Y.S. Jung, H.Y. Seo, D.W. Lee, and D.Y. Jeon, Thin Solid Films 445, 63 (2003).

    Article  Google Scholar 

  10. B. Yaglioglu, H.Y. Yeom, and D.C. Paine, Appl. Phys. Lett. 86, 261908 (2005).

    Article  Google Scholar 

  11. H.Q. Chiang, D. Hong, C.M. Hung, R.E. Presley, J.F. Wager, C.H. Park, D.A. Keszler, and G.S. Herman, J. Vac. Sci. Technol., B 24, 2702 (2006).

    Article  Google Scholar 

  12. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).

    Article  Google Scholar 

  13. H. Hosono, J. Non-Cryst. Solids 352, 851 (2006).

    Article  Google Scholar 

  14. E. Chong, K.C. Jo, and S.Y. Lee, Appl. Phys. Lett. 96, 152102 (2010).

    Article  Google Scholar 

  15. E. Chong, S.H. Kim, and S.Y. Lee, Appl. Phys. Lett. 97, 252112 (2010).

    Article  Google Scholar 

  16. S. Lee, H. Park, and D.C. Paine, J. Appl. Phys. 109, 063702 (2011).

    Article  Google Scholar 

  17. S. Lee, B. Bierig, and D.C. Paine, Thin Solid Films 520, 3764 (2012).

    Article  Google Scholar 

  18. D.C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, Thin Solid Films 516, 5894 (2008).

    Article  Google Scholar 

  19. B.G. Streetman and S.K. Banerjee, Solid State Electronic Devices, 6th ed. (Upper Saddle River: Pearson Prentice Hall, 2006).

    Google Scholar 

  20. S. Lee and D.C. Paine, Appl. Phys. Lett. 102, 052101 (2013).

    Article  Google Scholar 

  21. A.J. Leenheer, J.D. Perkins, M.F.A.M. van Hest, J.J. Berry, R.P. O’Hayre, and D.S. Ginley, Phys. Rev. B 77, 115215 (2008).

    Article  Google Scholar 

  22. N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, Thin Solid Films 496, 99 (2006).

    Article  Google Scholar 

  23. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010).

    Article  Google Scholar 

  24. J.-S. Park, H. Kim, and I.-D. Kim, J. Electroceram. 32, 117 (2014).

    Article  Google Scholar 

  25. Y. Taur and T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge: Cambridge University Press, 2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Baylor faculty start-up funds. DCP acknowledges the financial support of the National Science Foundation (NSF) Award No. DMR-1409590. The authors also gratefully thank K-LAB, Korea for the technical support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghwan Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, A.S., Paine, D.C. & Lee, S. Effect of O2 Fraction in the Sputter Gas on the Electrical Properties of Amorphous In-Zn-O and the Thin Film Transistor Performance. J. Electron. Mater. 45, 6310–6316 (2016). https://doi.org/10.1007/s11664-016-5008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5008-1

Keywords

Navigation