Skip to main content
Log in

Effect of oxygen partial pressure on the density of states of amorphous InGaZnO thin-film transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thin-film transistors (TFTs) with InGaZnO active layer with different oxygen partial pressures are fabricated by radio frequency sputtering. The influence of the oxygen partial pressure on the density of states (DOS) for InGaZnO-TFT is investigated by using temperature-dependent field-effect measurements. It indicates that the DOS become smaller with increasing oxygen partial pressure. The results are verified by the threshold voltage shift of InGaZnO-TFT with different oxygen partial pressures. The trend of the variation of DOS is consistent with that of the threshold voltage shift for InGaZnO-TFT. Thus, the gate bias instability is attributed to the charge trapping mechanism based on DOS. Therefore, this work offered a brief and accurate method to calculate DOS for demonstrating the bias stability of transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Xu, D. Luo, M. Li, M. Xu, J. Zou, H. Tao, L. Lan, L. Wang, J. Peng, Y. Cao, J. Mater. Chem. C 2, 1255 (2012)

    Article  Google Scholar 

  2. K. Nomura, H. Ohta, K. Uata, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003)

    Article  ADS  Google Scholar 

  3. E. Fortunato, P. Barquinha, A. Pimental, A. Goncalves, A. Margues, L. Prerier, R. Martins, Adv. Mater. 17, 590 (2005)

    Article  Google Scholar 

  4. J. Li, Y.Z. Fu, C.X. Huang, J.H. Zhang, X.Y. Jiang, Z.L. Zhang, Appl. Phys. Lett. 108, 143505 (2016)

    Article  ADS  Google Scholar 

  5. J. Lee, Appl. Phys. Lett. 108, 203302 (2016)

    Article  ADS  Google Scholar 

  6. J.H. Park, K. Jeon, S. Lee, S. Kim, S. Kim, I. Song, C.J. Kim, J. Park, D.M. Kim, D.M. Kim, IEEE Electron Device Lett. 29, 1292 (2008)

    Article  ADS  Google Scholar 

  7. S. Lee, S. Park, S. Kim, Y. Jeon, K. Jeon, J.H. Park, J. Park, I. Song, C.J. Kim, Y. Park, D.M. Kim, D.H. Kim, IEEE Electron Device Lett. 31, 231 (2010)

    Article  ADS  Google Scholar 

  8. X. Zhou, M. Wang, I.E.E.E. Trans, Electron Devices 61, 863 (2014)

    Article  ADS  Google Scholar 

  9. C.Y. Jeong, J. Sohn, S.H. Song, I.T. Cho, J.H. Lee, E.S. Cho, H.I. Kwon, Appl. Phys. Lett. 102, 082103 (2013)

    Article  ADS  Google Scholar 

  10. M.H. Boratto, L.V.A. de Scalvi, Ceram. Int. 40, 3785 (2014)

    Article  Google Scholar 

  11. J. Li, J.H. Zhang, X.W. Ding, W.Q. Zhu, X.Y. Jiang, Z.L. Zhang, Superlattice Microst. 65, 14 (2014)

    Article  ADS  Google Scholar 

  12. T.E. Bae, H. Kim, J. Jung, W.J. Cho, Appl. Phys. Lett. 104, 153506 (2014)

    Article  ADS  Google Scholar 

  13. P. Kofstad, J. Phys. Chem. Solids 23, 1571 (1962)

    Article  ADS  Google Scholar 

  14. P. Bonasewicz, W. Hirschwald, G. Neumann, Phys. Status Solidi 97, 593 (1986)

    Article  ADS  Google Scholar 

  15. V. Gavryushin, G. Raciukaitis, D. Juodzbalis, A. Kazlauskas, V. Kubertavicius, J. Cryst. Growth 138, 924 (1994)

    Article  ADS  Google Scholar 

  16. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, S. Kaneko, J. Appl. Phys. 48, 011301 (2009)

    Article  Google Scholar 

  17. D.S. Han, D.Y. Moona, Y.J. Kang, J.H. Park, J.W. Park, Curr. Appl. Phys. 13, S98 (2013)

    Article  ADS  Google Scholar 

  18. K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, S. Kaneko, J. Appl. Phys. 48, 011301 (2009)

    Article  Google Scholar 

  19. D.S. Han, D.Y. Moona, Y.J. Kang, J.H. Park, J.W. Park, Curr. Appl. Phys. 13, S98 (2013)

    Article  ADS  Google Scholar 

  20. Y.H. Tai, H.L. Chiu, L.S. Chou, J. Electrochem. Soc. 159, 200 (2012)

    Article  Google Scholar 

  21. F.R. Libsch, J. Kanicki, Appl. Phys. Lett. 62, 1286 (1993)

    Article  ADS  Google Scholar 

  22. M.J. Powell, Appl. Phys. Lett. 43, 597 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, CX., Zhu, WQ. et al. Effect of oxygen partial pressure on the density of states of amorphous InGaZnO thin-film transistors. Appl. Phys. A 122, 909 (2016). https://doi.org/10.1007/s00339-016-0447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0447-3

Keywords

Navigation