Skip to main content
Log in

Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnections

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The interfacial reactions between the widely employed solder Au-20wt.%Sn and the common contact metallizations (e.g. Ni, Cu and Pt) are normally complex and not well determined. In order to identify the proper contactor for Au-20wt.%Sn solder, the present study focuses on (1) rationalizing the interfacial reaction mechanisms of Au-20wt.%Sn|Cu as well as (2) measuring the mechanical properties of individual intermetallics formed at the interface. The evolution of interfacial reaction products were rationalized by using the experimental results in combination with the calculated Au-Cu-Sn phase diagram information. It was found that the growth of the AuCu interfacial intermetallic layer was diffusion-controlled. The diffusion path of Au-20wt.%Sn|Cu at 150°C was proposed. The hardness and indentation modulus of the interfacial reaction products were measured using nanoindentation tests. The results revealed a significant influence of the Cu solubility on the mechanical properties of (Au,Cu)Sn and (Au,Cu)5Sn, i.e. their hardness and contact modulus increased with the increase in the amount of Cu. Furthermore, results obtained here for the Au-20wt.%Sn|Cu joints were compared to those from Au-20wt.%Sn|Ni in order to assess the similarities and differences between these widely used interconnection metallization systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.C. Liu, J.W.R. Teo, S.K. Tung, and K.H. Lam, J Alloy. Compd. 448, 340 (2008).

    Article  Google Scholar 

  2. T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1 (2010).

    Article  Google Scholar 

  3. J.Y. Tsai, C.W. Chang, C.E. Ho, C.E. Lin, and C.R. Kao, J. Electron. Mater. 35, 65 (2006).

    Article  Google Scholar 

  4. A. Haque, B.H. Lim, A. Haseeb, and H.H. Masjuki, J. Mater. Sci 23, 115 (2012).

    Google Scholar 

  5. S.J. Cho, K.W. Paik, and Y.G. Kim, IEEE Trans. Compon. Packag. Manuf. Technol. Part B, Adv. Packag. 20, 167 (1997).

    Google Scholar 

  6. Z. Abdullah and M. Abdul Rahman, 34th IEEE/CPMT International Electronic Manufacturing Technology Symposium, (IEMT), IEEE (2010), p. 1.

  7. H.G. Song, J.W. Morris Jr., and M.T. McCormack, J. Electron. Mater. 29, 1038 (2000).

    Article  Google Scholar 

  8. J.W. Yoon, H.S. Chun, H.J. Lee, and S.B. Jung, J. Mater. Res. 22, 2817 (2007).

    Article  Google Scholar 

  9. H. Chung, C. Chen, C. Lin, and C. Chen, J. Alloy. Compd. 219, 485 (2009).

    Google Scholar 

  10. H. Dong, V. Vuorinen, X. Liu, T. Laurila, J. Li, and M. Paulasto-Kröckel, J. Electron. Mater. doi:10.1007/s11664- 015-4152-3.

  11. H. Dong, V. Vuorinen, X. Tao, T. Laurila, and M. Paulasto-Kröckel, J. Alloy. Compd. 588, 449 (2014).

    Article  Google Scholar 

  12. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  13. V. Grolier and R. Schmid-Fetzer, J. Electron. Mater. 37, 815 (2008).

    Article  Google Scholar 

  14. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  15. F.J.J. Van Loo, Prog. Solid State Ch. 20, 47 (1990).

    Article  Google Scholar 

  16. G.Y. Jang, J.W. Lee, and J.G. Duh, J. Electron. Mater. 33, 1103 (2004).

    Article  Google Scholar 

  17. M. Erinc, P.J.G. Schreurs, G.Q. Zhang, and M.G.D. Geers, Proceedings of 6th International Conference on Thermal Mechanical Multi-Physics Simulation and Experimnets in Micro-Electronics and Micro-Systems, IEEE (2005), p. 656.

  18. R.R. Chromik, D.N. Wang, A. Shugar, L. Limata, M.R. Notis, and R.P. Vinci, J. Mater. Res. 20, 2161 (2005).

    Article  Google Scholar 

  19. H. Xu, A. Rautiainen, V. Vuorinen, E. Österlund, T. Suni, H. Heikkinen, and M. Paulasto-KrÖckel, Electronics System-Integration Technology Conference (ESTC), IEEE, (2014), p. 1.

  20. A. Rautiainen, X. Xu, E. Österlund, J. Li, V. Vuorinen, and M. Paulasto-KrÖckel, J. Electr. Mater. (unpublished research).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqun Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Vuorinen, V., Laurila, T. et al. Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnections. J. Electron. Mater. 45, 5478–5486 (2016). https://doi.org/10.1007/s11664-016-4733-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4733-9

Keywords

Navigation