Skip to main content
Log in

Dynamics of Kinetically Limited Strain and Threading Dislocations in Temperature- and Compositionally Graded ZnSSe/GaAs (001) Metamorphic Heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the evolution of the strain and threading dislocation density in metamorphic compositionally and temperature-graded ZnS y Se1−y buffer layers. Linear variation in composition in conjunction with temperature grading may allow control over the relaxation process. Previously, we reported the development of a general kinetic model based on dislocation flow, which accounted for the time evolution of the strain relaxation in semiconductor structures under kinetically limited conditions, including interactions of threading and misfit defects. In this work, we studied ZnS y Se1−y /GaAs (001) heterostructures with linear compositional grading and a convex-upward (type A), linear (type B) or convex-downward (type C) temperature grading profile. The thermal budget available for relaxation in these types of structures is controlled by the temperature grading profile, made up of combinations of linear ramps and constant-temperature sections. In all cases, the temperature was varied from T 0 (400°C to 600°C) at the substrate interface to T F = 300°C at the surface. We also investigated the effect of varying the compositional gradient in the range from 0.18%/μm to 1.6%/μm. Structures with higher average temperature (greater thermal budget) and/or higher grading coefficient exhibited greater extent of relaxation and therefore reduced residual strain. Furthermore, controlling the extent of strain relaxation enabled optimization of the dislocation densities in these heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tersoff, Appl. Phys. Lett. 62, 693 (1993).

    Article  Google Scholar 

  2. J. Tersoff, Appl. Phys. Lett. 64, 2748 (1994).

    Article  Google Scholar 

  3. E.A. Fitzgerald, Y.-H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, and B.W. Weir, J. Vac. Sci. Technol. B 10, 1807 (1992).

    Article  Google Scholar 

  4. A. Sacedon, F. Gonzalez-Sanz, E. Calleja, E. Munoz, S.I. Molina, F.J. Pacheco, D. Araujo, R. Garcia, M. Lourenco, Z. Yang, P. Kidd, and D. Dunstan, Appl. Phys. Lett. 66, 3334 (1995).

    Article  Google Scholar 

  5. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, Appl. Phys. Lett. 92, 231916 (2008).

    Article  Google Scholar 

  6. J.I. Chyi, J.L. Shieh, J.W. Pan, and R.M. Lin, J. Appl. Phys. 79, 8367 (1996).

    Article  Google Scholar 

  7. E.F. Chor and C.J. Peng, Electron. Lett. 32, 1409 (1996).

    Article  Google Scholar 

  8. H. Choi, Y. Jeong, J. Cho, and M.H. Jeon, J. Cryst. Growth 311, 1091 (2009).

    Article  Google Scholar 

  9. B. Bertoli, D. Sidoti, S. Xhurxhi, T. Kujofsa, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, J.E. Ayers, and F.C. Jain, J. Appl. Phys. 108, 113525 (2010).

    Article  Google Scholar 

  10. S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, T. Kujofsa, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 40, 2348 (2011).

    Article  Google Scholar 

  11. T. Kujofsa, A. Antony, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 42, 3408 (2013).

    Article  Google Scholar 

  12. D.E. Grider, S.E. Swirhun, D.H. Narum, A.I. Akinwande, T.E. Nohava, W.R. Stuart, and P. Joslyn, J. Vac. Sci. Technol. B 8, 301–304 (1990).

    Article  Google Scholar 

  13. K. Inoue, J.C. Harmand, and T. Matsuno, J. Cryst. Growth 111, 313–317 (1991).

    Article  Google Scholar 

  14. L. Shen, H.H. Wieder, and W.S.C. Chang, Mater. Res. Soc. Symp. 379, 297–301 (1997).

    Article  Google Scholar 

  15. A. Wakita, H. Rohden, V. Robbins, N. Mll, C.-Y. Su, A. Nagy, and D. Basile, Jpn. J. Appl. Phys. 38, 1186–1189 (1999).

    Article  Google Scholar 

  16. X.Z. Shang, S.D. Wu, C. Liu, W.X. Wang, L.W. Guo, and Q. Huang, J. Phys. D 39, 1800–1804 (2006).

    Article  Google Scholar 

  17. B. Lee, J.H. Baek, J.H. Lee, S.W. Choi, S.D. Jung, W.S. Han, and E.H. Lee, Appl. Phys. Lett. 68, 2973–2975 (1996).

    Article  Google Scholar 

  18. I. Tangring, H.Q. Ni, B.P. Wu, D.H. Wu, Y.H. Xiong, S.S. Huang, Z.C. Niu, S.M. Wang, Z.H. Lai, and A. Larsson, Appl. Phys. Lett. 91, 221101 (2007).

    Article  Google Scholar 

  19. J.-F. He, H.-L. Wang, X.-J. Shang, M.-F. Li, Y. Zhu, L.-J. Wang, Y. Yu, H.-Q. Ni, Y.-Q. Xu, and Z.-C. Niu, J. Phys. D 44, 335102 (2011).

    Article  Google Scholar 

  20. T. Kujofsa and J.E. Ayers, J. Electron. Mater. 44, 3030 (2015).

    Article  Google Scholar 

  21. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  Google Scholar 

  22. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 52, 852 (1988).

    Article  Google Scholar 

  23. M. Tachikawa and M. Yamaguchi, Appl. Phys. Lett. 56, 484 (1990).

    Article  Google Scholar 

  24. B. Bertoli, E.N. Suarez, J.E. Ayers, and F.C. Jain, J. Appl. Phys. 106, 073519 (2009).

    Article  Google Scholar 

  25. T. Kujofsa, W. Yu, S. Cheruku, B. Outlaw, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 41, 2993 (2012).

    Article  Google Scholar 

  26. T. Kujofsa, S. Cheruku, W. Yu, B. Outlaw, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 42, 2764 (2013).

    Article  Google Scholar 

  27. J.W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  Google Scholar 

  28. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    Google Scholar 

  29. A.E. Romanov, W. Pompe, G.E. Beltz, and J.S. Speck, Appl. Phys. Lett. 69, 3342 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tedi Kujofsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kujofsa, T., Ayers, J.E. Dynamics of Kinetically Limited Strain and Threading Dislocations in Temperature- and Compositionally Graded ZnSSe/GaAs (001) Metamorphic Heterostructures. J. Electron. Mater. 45, 4580–4586 (2016). https://doi.org/10.1007/s11664-016-4659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4659-2

Keywords

Navigation