Skip to main content
Log in

Evolution of Kinetically Limited Lattice Relaxation and Threading Dislocations in Temperature-Graded ZnSe/GaAs (001) Metamorphic Heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the evolution of strain and threading dislocation density in metamorphic temperature-graded ZnSe buffer layers. Mismatched semiconductor heterostructures may be designed to take advantage of temperature grading to allow control over the relaxation process. To study temperature grading, we have applied a plastic flow model which predicts nonequilibrium strain relaxation as well as misfit and threading dislocation densities by accounting for the time evolution of kinetically limited and equilibrium strain relaxation, thermal activation of glide, and misfit–threading dislocation interactions. We considered ZnSe/GaAs (001) heterostructures comprising a convex-down (type A), linear (type B), and convex-up (type C) temperature grading profile. The thermal budget available for relaxation in these types of structures is controlled by the temperature grading profile, which consists of combinations of linear ramp-down and/or constant temperature growth; the temperature is varied from T 0 (400°C to 600°C) at the substrate interface to T F = 300°C at the surface. We show that structures with a higher thermal budget exhibit a greater extent of relaxation (lower strains). At lower thicknesses, the dislocation density is dominated by the extent of relaxation, whereas at greater thicknesses, it is controlled by annihilation and coalescence mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Tersoff, J. Appl. Phys. Lett. 62, 693 (1993).

    Article  Google Scholar 

  2. J. Tersoff, J. Appl. Phys. Lett. 64, 2748 (1994).

    Article  Google Scholar 

  3. E.A. Fitzgerald, Y.-H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, and B.W. Weir, J. Vac. Sci. Technol. B 10, 1807 (1992).

    Article  Google Scholar 

  4. A. Sacedon, F. Gonzalez-Sanz, E. Calleja, E. Munoz, S.I. Molina, F.J. Pacheco, D. Araujo, R. Garcia, M. Lourenco, Z. Yang, P. Kidd, and D. Dunstan, Appl. Phys. Lett. 66, 3334 (1995).

    Article  Google Scholar 

  5. Shotaro Takeuchi, Yosuke Shimura, Osamu Nakatsuka, Shigeaki Zaima, Masaki Ogawa, and Akira Sakai, Appl. Phys. Lett. 92, 231916 (2008).

    Article  Google Scholar 

  6. J.I. Chyi, J.L. Shieh, J.W. Pan, and R.M. Lin, J. Appl. Phys. 79, 8367 (1996).

    Article  Google Scholar 

  7. E.F. Chor and C.J. Peng, Electron. Lett. 32, 1409 (1996).

    Article  Google Scholar 

  8. H. Choi, Y. Jeong, J. Cho, and M.H. Jeon, J. Cryst. Growth 311, 1091 (2009).

    Article  Google Scholar 

  9. B. Bertoli, D. Sidoti, S. Xhurxhi, T. Kujofsa, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, J.E. Ayers, and F.C. Jain, J. Appl. Phys. 108, 113525 (2010).

    Article  Google Scholar 

  10. S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, T. Kujofsa, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 40, 2348 (2011).

    Article  Google Scholar 

  11. T. Kujofsa, A. Antony, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, S. Cheruku, J.P. Correa, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 42, 3408 (2013).

    Article  Google Scholar 

  12. D.E. Grider, S.E. Swirhun, D.H. Narum, A.I. Akinwande, T.E. Nohava, W.R. Stuart, and P. Joslyn, J. Vac. Sci. Technol. B 8, 301–304 (1990).

    Article  Google Scholar 

  13. K. Inoue, J.C. Harmand, and T. Matsuno, J. Cryst. Growth 111, 313–317 (1991).

    Article  Google Scholar 

  14. L. Shen, H.H. Wieder, and W.S.C. Chang, Mater. Res. Soc. Symp. 379, 297–301 (1997).

    Article  Google Scholar 

  15. A. Wakita, H. Rohden, V. Robbins, N. Mll, C.-Y. Su, A. Nagy, and D. Basile, Jpn. J. Appl. Phys. 38, 1186–1189 (1999).

    Article  Google Scholar 

  16. X.Z. Shang, S.D. Wu, C. Liu, W.X. Wang, L.W. Guo, and Q. Huang, J. Phys. D 39, 1800–1804 (2006).

    Article  Google Scholar 

  17. B. Lee, J.H. Baek, J.H. Lee, S.W. Choi, S.D. Jung, W.S. Han, and E.H. Lee, Appl. Phys. Lett. 68, 2973–2975 (1996).

    Article  Google Scholar 

  18. I. Tangring, H.Q. Ni, B.P. Wu, D.H. Wu, Y.H. Xiong, S.S. Huang, Z.C. Niu, S.M. Wang, Z.H. Lai, and A. Larsson, Appl. Phys. Lett. 91, 221101 (2007).

    Article  Google Scholar 

  19. J.-F. He, H.-L. Wang, X.-J. Shang, M.-F. Li, Y. Zhu, L.-J. Wang, Y. Yu, H.-Q. Ni, Y.-Q. Xu, and Z.-C. Niu, J. Phys. D 44, 335102 (2011).

    Article  Google Scholar 

  20. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  Google Scholar 

  21. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 52, 852 (1988).

    Article  Google Scholar 

  22. M. Tachikawa and M. Yamaguchi, Appl. Phys. Lett. 56, 484 (1990).

    Article  Google Scholar 

  23. B. Bertoli, E.N. Suarez, J.E. Ayers, and F.C. Jain, J. Appl. Phys. 106, 073519 (2009).

    Article  Google Scholar 

  24. T. Kujofsa, W. Yu, S. Cheruku, B. Outlaw, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 41, 2993 (2012).

    Article  Google Scholar 

  25. J.W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  Google Scholar 

  26. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    Google Scholar 

  27. A.E. Romanov, W. Pompe, G.E. Beltz, and J.S. Speck, Appl. Phys. Lett. 69, 3342 (1996).

    Article  Google Scholar 

  28. T. Kujofsa, S. Cheruku, W. Yu, B. Outlaw, S. Xhurxhi, F. Obst, D. Sidoti, B. Bertoli, P.B. Rago, E.N. Suarez, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 42, 2764 (2013).

    Article  Google Scholar 

  29. M. Stoehr, F. Hamdani, J.P. Lascaray, and M. Maurin, Phys. Rev. B. 44, 8912 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kujofsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kujofsa, T., Ayers, J.E. Evolution of Kinetically Limited Lattice Relaxation and Threading Dislocations in Temperature-Graded ZnSe/GaAs (001) Metamorphic Heterostructures. J. Electron. Mater. 44, 3030–3035 (2015). https://doi.org/10.1007/s11664-015-3745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3745-1

Keywords

Navigation