Skip to main content
Log in

Relaxation Dynamics and Threading Dislocations in ZnSe and ZnS y Se1−y /GaAs (001) Heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The design of lattice-mismatched semiconductor devices requires a predictive model for strains and threading dislocation densities. Previous work enabled modeling of uniform layers but not the threading dislocations in device structures with arbitrary compositional grading. In this work we present a kinetic model for lattice relaxation which includes misfit–threading dislocation interactions, which have not been considered in previous annihilation–coalescence models. Inclusion of these dislocation interactions makes the kinetic model applicable to compositionally graded structures, and we have applied it to ZnSe/GaAs (001) and ZnS y Se1−y /GaAs (001) heterostructures. The results of the kinetic model are consistent with the observed threading dislocation behavior in ZnSe/GaAs (001) uniform layers, and for graded ZnS y Se1−y /GaAs (001) heterostructures the kinetic model predicts that the threading dislocation density may be reduced by the inclusion of grading buffer layers employing compositional overshoot. This “dislocation compensation” effect is consistent with our high-resolution x-ray diffraction experimental results for graded ZnS y Se1−y /GaAs (001) structures grown by photoassisted metalorganic vapor-phase epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization (Boca Raton: CRC Press, 2007).

    Book  Google Scholar 

  2. S. Akram, H. Ehsani, and I.B. Bhat, J. Cryst. Growth 124, 628 (1992).

    Article  CAS  Google Scholar 

  3. S. Kalisetty, M. Gokhale, K. Bao, J.E. Ayers, and F.C. Jain, Appl. Phys. Lett. 68, 1693 (1996).

    Article  CAS  Google Scholar 

  4. P. Sheldon, K.M. Jones, M.M. Al-Jassim, and B.G. Yacobi, J. Appl. Phys. 63, 5609 (1988).

    Article  CAS  Google Scholar 

  5. J.E. Ayers, L.J. Schowalter, and S.K. Ghandhi, J. Cryst. Growth 125, 329 (1992).

    Article  CAS  Google Scholar 

  6. M. Tachikawa and M. Yamaguchi, Appl. Phys. Lett. 56, 484 (1990).

    Article  CAS  Google Scholar 

  7. A.E. Romanov, W. Pompe, G.E. Beltz, and J.S. Speck, Appl. Phys. Lett. 69, 3342 (1996).

    Article  CAS  Google Scholar 

  8. J.W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975).

    Article  CAS  Google Scholar 

  9. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  10. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  CAS  Google Scholar 

  11. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 52, 852 (1988).

    Article  CAS  Google Scholar 

  12. B. Bertoli, E.N. Suarez, J.E. Ayers, and F.C. Jain, J. Appl. Phys. 106, 073519 (2009).

    Article  Google Scholar 

  13. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, eds., Thermophysical Properties of Matter, Vol. 13: Thermal Expansion, Nonmetallic Solids (New York: Plenum, 1977).

  14. S.S. Ballard, S.E. Brown, and J.S. Browder, Appl. Opt. 17, 1152 (1978).

    Article  CAS  Google Scholar 

  15. C. Giannini, L. Tapfer, T. Peluso, N. Lovergine, and L. Vasanelli, J. Phys. D 28, A125 (1995).

    Article  CAS  Google Scholar 

  16. O. Madelung, eds., Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology—New Series, Vol. 17b (Berlin: Springer, 1982).

    Google Scholar 

  17. S.S. Ballard and J.S. Browder, Appl. Opt. 12, 1873 (1966).

    Article  Google Scholar 

  18. R.B. Roberts, G.K. White, and T.M. Sabine, Aust. J. Phys. 34, 701 (1981).

    Article  CAS  Google Scholar 

  19. I. Yonenaga, K. Watanabe, S. Itoh, and S. Fujiwara, J. Mater. Sci. 41, 2601 (2006).

    Article  CAS  Google Scholar 

  20. X.G. Zhang, D.W. Parent, P. Li, A. Rodriguez, G. Zhao, J.E. Ayers, and F.C. Jain, J. Vac. Sci. Technol. B 18, 1375 (2000).

    Article  CAS  Google Scholar 

  21. B. Greenberg, private communication.

  22. W.L. Roth, Physics and Chemistry of II–VI Compounds, eds. M. Aven and J.S. Prener (Amsterdam: North-Holland, 1967).

  23. C.G. Hodgins and J.C. Irwin, Phys. Stat. Sol. A28, 647 (1975).

    Article  Google Scholar 

  24. J.E. Ayers, J. Cryst. Growth 135, 71 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kujofsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kujofsa, T., Cheruku, S., Yu, W. et al. Relaxation Dynamics and Threading Dislocations in ZnSe and ZnS y Se1−y /GaAs (001) Heterostructures. J. Electron. Mater. 42, 2764–2770 (2013). https://doi.org/10.1007/s11664-013-2668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2668-y

Keywords

Navigation