Skip to main content
Log in

Investigation and Physical Interpretation of H-Shaped Metamaterials in X-Band Waveguide for Microwave Filter Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study numerically and experimentally introduces and investigates H-shaped metamaterials (MTMs) with negative refractive index on the coupling effect of a split ring resonator at the microwave X-band frequencies. The proposed models, consisting of one and two H-shaped MTMs structures, are designed in X-band for modern radar applications. The MTM structures show strong resonance at a range between 8 and 12 GHz. In addition, the effective constitutive parameters are revealed by using a retrieval procedure to verify the negative refraction phenomena of the proposed models. Furthermore, in order to verify the MTM characteristics of the structures, surface current distributions are realized. It can be seen that the structures can be efficiently used for filters, radar applications and so on in a certain frequency regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Vesalago, Sov. Phys. Usp. 10, 509 (1968).

    Article  Google Scholar 

  2. R.A. Shelby, D. Smith, and S. Schultz, Science 292, 77 (2001).

    Article  Google Scholar 

  3. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).

    Article  Google Scholar 

  4. M. Karaaslan, E. Unal, E. Tetik, K. Delihacioglu, F. Karadag, and F. Dincer, IET Microw. Antennas Propag. 7, 215 (2013).

    Article  Google Scholar 

  5. C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and E. Demirel, Opt. Commun. 322, 137 (2014).

    Article  Google Scholar 

  6. F. Dincer, J. Electromagn. Waves Appl. (2015). doi:10.1080/09205071.2015.1027794.

    Google Scholar 

  7. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  Google Scholar 

  8. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R.S. Penciu, M. Kafesaki, C.M. Soukoulis, and E. Ozbay, Phys. Rev. B 73, 193103 (2006).

    Article  Google Scholar 

  9. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, and X. Zhang, Science 303, 1494 (2004).

    Article  Google Scholar 

  10. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005).

    Article  Google Scholar 

  11. F. Dincer, C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, Prog. Electromagn. Res. 140, 227–239 (2013).

    Article  Google Scholar 

  12. C. Sabah and H.G. Roskos, J. Phys. D Appl. Phys. 44, 255101 (2011).

    Article  Google Scholar 

  13. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C.M. Soukoulis, and E. Ozbay, New J. Phys. 7, 168 (2005).

    Article  Google Scholar 

  14. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).

    Article  Google Scholar 

  15. O. Sydoruk, E. Tatartschuk, E. Shamonina, and L. Solymar, J. Appl. Phys. 105, 014903 (2009).

    Article  Google Scholar 

  16. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A.A. Radkovskaya, M. Shamonin, T. Hao, C.J. Stevens, G. Faulkner, D.J. Edwards, and E. Shamonina, Phys. Status Solidi 244, 1170 (2007).

    Article  Google Scholar 

  17. C. Lee and C. Seo, Microw. Opt. Technol. Lett. 54, 1059 (2012).

    Article  Google Scholar 

  18. A.M. Nicolson and G. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).

    Article  Google Scholar 

  19. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33 (1974).

    Article  Google Scholar 

  20. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C.M. Soukolis, J. Opt. A 11, 114003 (2009).

    Article  Google Scholar 

  21. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C.M. Soukoulis, Negative refractive index due to chirality. Phys. Rev. B 79, 121104 (2009).

    Article  Google Scholar 

  22. Z. Li, M. Mutlu, and E. Ozbay, Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J. Opt. 15, 023001 (2013).

    Article  Google Scholar 

  23. Z. Li, H. Caglayan, E. Colak, J. Zhou, C.M. Soukoulis, and E. Ozbay, Opt. Express 18, 5375 (2010).

    Article  Google Scholar 

  24. L. Ya-Hong, L. Chun-Rong, and Z. Xiao-Peng, Acta Phys. Sin. 56, 5883 (2007).

    Google Scholar 

  25. P. Kaur, S.K. Aggarwal, and A. De, Double H shaped metamaterial embedded compact RMPA, in International Conference on Advances in Computing, Communications and Informatics, pp. 483–486, (2014).

  26. J. Machac, M. Rytir, P. Protiva, and J. Zehentner, A double H-shaped resonator for an isotropic ENG metamaterial, in Proceedings of the 38th European Microwave Conference, pp. 547–550, (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furkan Dincer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dincer, F. Investigation and Physical Interpretation of H-Shaped Metamaterials in X-Band Waveguide for Microwave Filter Applications. J. Electron. Mater. 45, 812–819 (2016). https://doi.org/10.1007/s11664-015-4211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4211-9

Keywords

Navigation