Skip to main content
Log in

Effects of Microstructure and Loading on Fracture of Sn-3.8Ag-0.7Cu Joints on Cu Substrates with ENIG Surface Finish

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure [interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, and R. Mahajan, Proc. 12th IEEE—Elect. Packag. Technol. Conf., Singapore, December 8–10 (2010, pp. 298–303).

  2. P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 41, 412 (2012).

    Article  Google Scholar 

  3. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 41, 375 (2012).

    Article  Google Scholar 

  4. G. Humpston and D.M. Jacobson, Principles of Soldering and Brazing (Materials Park, OH: ASM International, 1993).

    Google Scholar 

  5. A. Sharif, M.N. Islam, and Y.C. Chan, Mater. Sci. Eng. B 113, 184 (2004).

    Article  Google Scholar 

  6. J.W. Yoon, B.I. Noh, and S.B. Jung, IEEE Trans. Compon. Packag. Technol. 33, 64 (2010).

    Article  Google Scholar 

  7. R. Zhang, F. Guo, J. Liu, H. Shen, and F. Tai, J. Electron. Mater. 38, 241 (2009).

    Article  Google Scholar 

  8. M.O. Alam and Y.C. Chan, J. Appl. Phys. 98, 123527-1 (2005).

    Google Scholar 

  9. P.L. Wu, M.K. Huang, C. Lee, and S.R. Tzan, J. Electron. Mater. 33, 157 (2004).

    Article  Google Scholar 

  10. M.S. Lee, C.M. Liu, and C.R. Kao, J. Electron. Mater. 28, 57 (1999).

    Article  Google Scholar 

  11. J.J. Sundelin, S.T. Nurmi, T.K. Lepistö, and E.O. Ristolainen, Mater. Sci. Eng. A 420, 55 (2006).

    Article  Google Scholar 

  12. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    Article  Google Scholar 

  13. C.E. Ho, Y.L. Lin, and C.R. Kao, Chem. Mater. 14, 949 (2002).

    Article  Google Scholar 

  14. J.W. Yoon, S.W. Kim, and S.B. Jung, J. Alloys Compd. 392, 247 (2005).

    Article  Google Scholar 

  15. V. Vuorinen, H. Yu, T. Laurila, and J.K. Kivilahti, J. Electron. Mater. 37, 792 (2008).

    Article  Google Scholar 

  16. T.K. Lee, H. Ma, K.C. Liu, and J. Xue, J. Electron. Mater. 39, 2564 (2010).

    Article  Google Scholar 

  17. K.S. Lin, H.Y. Huang, and C.P. Chou, JMEPEG 18, 182 (2009).

    Article  Google Scholar 

  18. J.W. Yoon, B.I. Noh, and S.B. Jung, J. Electron. Mater. 40, 1950 (2011).

    Article  Google Scholar 

  19. Y.D. Jeon, K.W. Paik, A. Ostmann, and H. Reichl, J. Electron. Mater. 34, 80 (2005).

    Article  Google Scholar 

  20. Y. Xu, S. Qu, and K.N. Tu, J. Mater. Res. 23, 1482 (2008).

    Article  Google Scholar 

  21. S.M. Hayes, N. Chawla, and D.R. Frear, Microelectron. Reliab. 49, 269 (2009).

    Article  Google Scholar 

  22. J.H.L. Pang and C.W. Seetoh, Eng. Fract. Mech. 57, 57 (1997).

    Article  Google Scholar 

  23. J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1991).

    Article  Google Scholar 

  24. ASTM E561-05, Annual Book of ASTM Standards, Vol. 04.01 (Philadelphia: ASTM, 2008), p. 593.

  25. B.S. Majumdar and J. Ahmad, Metal-Ceramic Joining, ed. P. Kumar and V.A. Greenhut. (Warrendale, PA: TMS, 2009), pp. 67–97.

  26. J. Dundurs, J. Appl. Mech. 36, 650 (1969).

    Article  Google Scholar 

  27. X. Long, R. Guduru, I. Dutta, V. Sarihan, and D.R. Frear, J. Electron. Mater. 37, 189 (2008).

    Article  Google Scholar 

  28. K.E. Yazzie, H. Fei, H. Jiang, and N. Chawla, Acta Mater. 60, 4336 (2012).

    Article  Google Scholar 

  29. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  30. W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Mater. Sci. Eng. A 396, 385 (2005).

    Article  Google Scholar 

  31. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 30, 1157 (2001).

    Article  Google Scholar 

  32. S.C. Yang, C.C. Chang, M.H. Tsai, and C.R. Kao, J. Alloys Compd. 499, 149 (2010).

    Article  Google Scholar 

  33. H.S. Chun, J.W. Yoon, and S.B. Jung, J. Alloys Compd. 439, 91 (2007).

    Article  Google Scholar 

  34. Z. Huang, P. Kumar, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, J. Electron. Mater. 43, 88 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation (NSF) Grant DMR-0939392 and Semiconductor Research Corporation (SRC) Contracts 2008-KJ-1855 and 2005-KC-1292 (Task 1292.088). Partial support from Strategic Research and Development Program (SERDP) Contract # W912HQ-10-C-0041 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Kumar, P., Dutta, I. et al. Effects of Microstructure and Loading on Fracture of Sn-3.8Ag-0.7Cu Joints on Cu Substrates with ENIG Surface Finish. J. Electron. Mater. 43, 4485–4496 (2014). https://doi.org/10.1007/s11664-014-3441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3441-6

Keywords

Navigation